
Maciej Sobieraj

Lecture 1

Outline

1. Introduction to computer programming

2. Advanced flow control and data aggregates

Your first program

• First we need to define our expectations for the

program. They’ll be very modest.

• We want a short text to appear on the screen. Let's

assume that the text will state:

 „It's me, your first program.”

• What further steps does our first program need to

perform? Let's try to enumerate them here:
• to start

• to write the text on the screen

• to stop

• This type of structured and semi-formal description

of each step of the program is called an algorithm.

Your first program

• # (hash) at the beginning of the first line means that

the content of this line is the so-called

preprocessor directive

• it’s a separate part of the compiler whose task is to

pre-read the text of the program and make some

modifications in it.

Your first program

• The changes the preprocessor will introduce are

fully controlled by its directives.

• We are dealing with the include directive.

• When the preprocessor meets that directive, it

replaces the directive with the content of the file

whose name is listed in the directive

Your first program

• Writing a program is similar to building a

construction with ready-made blocks.

• In our program, we are going to use one such block

and it will happen when we want to write something

on the screen.

• That block is called cout, but the compiler knows

nothing about it so far.

Your first program

• A set of preliminary information that the compiler

needs is included in header files.

• These files contain a collection of preliminary

information about ready-made blocks which can be

used by a program to write text on the screen, or to

read letters from the keyboard.

• So when our program is going to write something, it

will use a block called cout.

Your first program

• In the C++ language, all elements of the standard

C++ library are declared inside the namespace

called std.

• A namespace is an abstract container or

environment created to hold a logical grouping of

unique entities (blocks).

Your first program

• The standard of the C++ language assumes that

among many different blocks that may be put into a

program, one specific block must always be

present, otherwise the program won't be correct.

• This block is always a function with the same name:

main.

Your first program

• Inside the main function body we find a reference to

a block named cout.

• Each instruction in C++ must end with a

semicolon.

• This particular statement says: instruct the entity

named cout to show the following text on the

screen (as indicated by the << digraph, which

specifies the direction in which the text is sent).

Your first program

• Return is used in the function, it causes the end of

function execution.

• If you perform return somewhere inside a function,

this function immediately interrupts its execution.

Numbers

• The numbers handled by modern computers are of two

types:

 integers, that is, whole numbers or those which are devoid of the

fractional part,

 floating-point numbers (or simply floats) that contain (or are able

to contain) the fractional part.

• The characteristic of a number which determines its kind,

range and application is called type.

A variable is variable

• To store numbers or results of arithmetic operation we

use special “containers” called variables.

• Each variable have:

 a name

 a type

 a value

A variable is variable

• If you want to give a name to the variable, you have to

follow some strict rules:

 the name of the variable can be composed of upper-case or

lower-case Latin letters, digits and the character _ (underscore),

 the name of the variable must begin with a letter,

 the underline character is a letter (strange but true),

 upper- and lower-case letters are treated as different (a little

differently than in the real world - Alice and ALICE are the same

given names, but they are two different variable names, and

consequently, two different variables).

A variable is variable

• The type is an attribute that uniquely defines which

values can be stored inside the variable.

• We’ve already encountered the integer (int) and floating

point (float) types.

• The value of a variable is what we have put into it. We

can only enter a value that is compatible with the

variable’s type.

• The variable exists as a result of a declaration.

• A declaration is a syntactic structure that binds a name

provided by the programmer with a specific type offered

by the C++ language.

A variable is variable

• Declaration of variable of type int named Counter.

• Assignment operator has a simple syntax and

unambiguous interpretation.

• Another example:

A variable is variable

• In the C++ language the sign = does not mean is equal

to, but assign a value.

• The value of variable x is incremented by one, which

has nothing to do with comparing the variable with any

value.

A variable is variable

• List of words that play a very special role in every C++

language program.

Comments on the comments

• A line comment discards everything from where the pair

of slash signs (//) is found up to the end of that same

line.

• In the C++ language a block comment is a text that

begins with a pair of the following characters:

Floating-point numbers

• Note: the decimal point is essential to recognize floating-

point numbers in C++. Look at these two numbers:

 4

 4.0

• You might think that they’re exactly the same, but the

C++ compiler sees them completely differently:

 4 is an int.

 4.0 is a float.

Floating-point numbers

• Very important difference between these two data types

• After changing from int to float, the value of the variable f

is 100.0, because the value of type int (100) is

automatically converted into a float (100.0).

Operators

• An assignment operator is the = sign

• An asterisk * is a multiplication operator.

Operators

• A slash / is a divisional operator.

• Division by zero

Operators

• The addition operator is the + (plus) sign

• The subtraction operator is obviously the – (minus)

sign

Operators

• The remainder operator is quite peculiar, because it

has no equivalent among traditional arithmetic operators.

• Its graphical representation in the C++ language is the %

(percent) character. It’s a binary operator (it performs the

modulo operation)

Operators

• Operators in order from the highest to the lowest priority.

Operators

• Both operators (* and %) have the same priority.

• Subexpressions in parentheses are always calculated

first

Operators

• Operator used to increment a variable by one

 int SheepCounter;

 SheepCounter = 0;

 SheepCounter++;

• Decrease the value by one

 DaysUntilHoliday--;

Operators

• Operation: ++Variable --Variable

 Effect: Increment/decrement the variable by 1 and use its value

already increased/reduced.

• Operation: Variable++ Variable--

 Effect: Use the original (unchanged) variable's value and then

increment/decrement the variable by 1.

Operators

• Result?

Operators

• Shortcut operators

Character type

• char, which is an abbreviation of the word “character”.

• Computers store characters as numbers.

Character type

• Enclosed in single quotes (apostrophes)

• Assign a non-negative integer value that is the code of

the desired character

Character type

• The C++ language uses a special convention that also

extends to other characters, not only to apostrophes.

• The \ character (called backslash) acts as a so-called

escape character because by using the \ we escape

from the normal meaning of the character that follows

the slash.

Character type

• \n - denotes a transition to a new line and is sometimes

called an LF (Line Feed)

• \r - denotes a return to the beginning of the line and is

sometimes called a CR (Carriage Return)

Character type

• \a (as in alarm) is a relic of the past when teletypes were

often used to communicate with computers; sending this

character to a teletype turns on its ringer, hence the

character is officially called BEL (as bell);

Character type

• There is an assumption in the C++ language that may

seem surprising at first: the char type is treated as a

special kind of int type.

Question: is x equal to y?

• Here we have another developer who counts black and

white sheep separately and can only fall asleep when

there are exactly twice as many black sheep as white

ones.

Question: is x not equal to y?

• To ask this question, we use the != (exclamation equal).

Question: is x greater than y?

• You can ask this question using the > (greater) operator.

Question: is x greater than or equal

to y?

• The “greater” operator has another special, non-strict

variant but it’s denoted differently than in the classical

arithmetic notation: >= (greater equal).

Question: is x less than (or equal

to) y?

• The operators we’re using in this case are the < (less)

operator and its non-strict sibling <= (less equal).

How do we use the answer we got?

• What can we do with the answer the computer has given

us? Well, we have at least two options: first, we can

memorize it (store it in a variable) and make use of it

later. How do we do that?

Conditions and conditional

executions

• Mechanism to allow us to do something if a condition is

met.

• The C++ language offers us a special instruction. Due to

its nature and its application, it’s called a conditional

instruction (or conditional statement).

Conditions and conditional

executions

• Mechanism to allow us to do something if a condition is

met.

• The C++ language offers us a special instruction. Due to

its nature and its application, it’s called a conditional

instruction (or conditional statement).

Conditions and conditional

executions

• When we have to execute conditionally more than one

instruction, we need to use the braces { and } which

create a structure known as a compound statement or

(much simpler) a block. The compiler treats the block as

a single instruction.

Conditions and conditional

executions

• When we have to execute conditionally more than one

instruction, we need to use the braces { and } which

create a structure known as a compound statement or

(much simpler) a block. The compiler treats the block as

a single instruction.

Output

• cout is one of these streams and is ready to work

without any special preparations – it only needs the

header file name.

• Both the << operator and the cout stream are

responsible for two important actions:

 converting the internal (machine) representation of the integer

value into a form acceptable for humans

 transferring the converted form to the output device e.g.

console

Output

• You can also connect more than one << operator in one

cout statement and each of the printed elements may be

of a different type and a different nature.

Output

• If you want a value of type int to be presented as a fixed-

point hexadecimal number, you need to use the so-

called manipulator.

• A manipulator that is designed to switch the stream into

a hexadecimal mode is called a hex.

Output

• The oct manipulator switches the stream into the octal

mode.

Output

• The three manipulators we showed you previously are

only one of the methods (probably the simplest one) of

accessing the basefield property. You can achieve the

same effect by using the setbase manipulator, which

directly instructs the stream on what base value it should

use during conversion.

• It requires a header file called iomanip

Output

• In general, output streams (including cout) are able to

recognize the type of the printed value and act

accordingly i.e. they’ll use a proper form of data

presentation for char and float values.

Output

• cout is able to recognize the actual type of its element

even when it is an effect of a conversion.

• ASCII code of X is 88

Output

• Sometimes we may want to (and sometimes we may

have to) break the line being sent to the screen.

Output

• The output streams try to output float values in a form

that is more compact, and a decision is taken for every

printed float value.

• For example, the following snippet:

 float x = 2.5, y = 0.0000000025;

 cout << x << endl << y << endl;

• It will produce the following output on the screen:

 2.5

 2.5e-009

Output

• The program will output the following text:

 2.500000 0.000000

 2.500000e+000 2.500000e-009

Input

• The simplest way is to mentally reverse the direction of

the transfer and to acknowledge that for the data input:

 we use cin stream instead of cout

 we use >> operator instead of <<.

• By the way, the >> operator is often referred to as an

extraction operator.

• The cin stream, along with the extraction operator, is

responsible for:

 transferring the human-readable form of the data from the input

device e.g. a console

 converting the data into the internal (machine) representation of

the value being input.

Input

• The user enters the value from the keyboard and the

program stores it in a specified variable (MaxSheep).

Input

Input

Outline

1. Introduction to computer programming

2. Advanced flow control and data aggregates

The conditional statement

• The “C++” language allows us to express these

alternative plans.

• So the if-else execution goes as follows:

 if the condition is “true” (its value is not equal to zero) the

perform_if_condition_true is executed and the conditional

statement comes to an end;

 if the condition is “false” (it is equal to zero) the

perform_if_condition_false is executed and the conditional

statement comes to an end.

The conditional statement

• Just like the other, simpler instructions we’ve already

encountered, both if and else may contain only one

statement.

• If you want to add more than one instruction, then you

have to use a block

The conditional statement

• Think about when the instruction placed after if is

another if.

• Remember that every else refers to the closest former if

that doesn’t match any other else.

The conditional statement

• When you assemble subsequent if statements, it’s called

a cascade.

Not only the int is an int

• To specify our memory requirements, we can use some

additional keywords called modifiers:

 long – used to declare that we need a wider range of ints than

the standard one;

 short – used to declare that we need a narrower range of ints

than the standard one;

 unsigned – used to declare that a variable will be used only for

non-negative numbers;

Not only the int is an int

• The Counter variable will use fewer bits than the

standard int (e.g. it could be 16 bits long - in this case,

the range of the variable will be suppressed to the range

of [-32768 to 32767]).

• The word int may be omitted as all the declarations

lacking a type name are considered to specify int by

default

Not only the int is an int

• The Ants variable will use more (or just as many) bits

than the standard int (e.g. 64 bits so it can be used to

store numbers from the range of

[-9223372036854775808 to 9223372036854775807]

Not only the int is an int

• If we decide that a variable will never be a negative

value, we can use the unsigned modifier

• We can also mix some of the modifiers together

Not only the int is an int

• The short and long modifiers cannot be used with the

float, but there is a type named double.

• The data stored in the floating-point variable has finite

precision - in other words, only a certain number of

digits are precisely stored in the variable

• We can say that the variable saves (only) 8 precise

digits. This is within the expected accuracy of 32-bit long

floats. Using a double (which is usually 64 bit long)

guarantees that the variable will save more significant

digits - about 15 to 17.

Floats and their traits

• If a very small float value is added to a very large one,

you could end up with a surprise.

• If we add these two floats, we’ll probably get

 11111110656.000000

In memory of George Boole

• Variables of this type are able to store only two distinct

values: true and false.

Two simple programs

Two simple programs

Two simple programs

• Let’s ignore the “C++” language for the moment and try

to analyze the problem while not thinking about the

programming. In other words, let’s try to write the

algorithm, and when we’re happy with it, we'll try to

implement it.

• We’re going to use a kind of notation that is not a

programming language at all, but is formalized, concise

and readable. We call this pseudo-code.

The loop named “while”

• Performing a certain part of the code more than once is

called a loop.

• while repeats the execution as long as the condition

evaluates to “true”.

The loop named “while”

• if you want while to execute more than one statement,

you must (like if) use a block

The loop named “while”

The loop named “while”

The loop named “while”

The loop named “while”

The “do” loop or do it at least once

• do while loop:

 the condition is checked at the end of the body execution,

 the loop's body is executed at least once, even if the condition is

not met.

The “do” loop or do it at least once

“for” - the last loop

• it’s more important to count the “turns” of the loop

than to check the conditions.

• We can distinguish three independent elements there:

 the initiation of the counter

 the checking of the condition

 the modification of the counter

“for” - the last loop

break and continue – the loop's

spices

• break - exits the loop immediately and unconditionally

ends the loop’s operation; the program begins to execute

the nearest instruction after the loop's body;

break and continue – the loop's

spices

• continue – behaves as the program suddenly reached

the end of the body; the end of the loop's body is

reached and the condition expression is tested

immediately.

