Maciej Sobieraj

Lecture 2

Outline

1. Advanced flow control and data aggregates

2. Extending expressive power: pointers,
functions and memory

Arrays

* Why?
= |t may be that we have to read, store, process,

and finally, print dozens, maybe hundreds, {:
perhaps thousands of numbers.

o

int varl, var2, var3, vard, vars, var5, var/, varg, var9; {:}

* store five values of type int

= the elements in an array are numbered starting, o
from O

int numbers[5]:

=

I | Arrays

« Assigning a value to a chosen element of an
array

rs|0] = 111;

« Avalue stored in the third element of the array

| = numbers|2);

Arrays

e The sum of all values stored in the numbers
array

int numbers|5], sum = 0;

for(inti=0;i<5;i++)
sum += numbers]i];

* Assigning the same value (e.g. 2012) to all
elements of the array

int numbers|5];

for(inti=0;i<5;i++)
numbers|i] = 2012;

I | Arrays

 What the code below does?

for(inti=0;i<2;i++){
auxiliary = numbers|il;
numbers|i| = numbers[4 —i];
numbers|4 —i]| = auxiliary;

}

I | Array Initialization

* The vector initiator is simply a list of values
enclosed inside curly brackets.

int vector/5/=10,1,2,3,4 }:

* We didn't specify the size of the array but
provided an initiator.

int vector|| ={0,1,2,3,4,5,6 };

Not only Ints

float FloatArr/10/;

char surname|20/;

bool votes| 100/;

I | Not only vectors

* two dimensional array

Int chessboard|8| 8!:

A B € D E F & H

(YR (O] [1] j(UReAR (0] (3] [(UREIY (O] [S] [{URIQY (O] (7]

BSRIYN (1] (1] QESNPAN (1] [3] JRSNEIN (1] [S] QESREQN (1] (7]

[2][0] I’llllPl[ﬂI [2] [4] g&A HJ[)II/]

WRUN (7] [1] JARPIN (7] (3] [RANEIN (7] (5] QEAREIIN (7] (7]

A B C D E F G H

I | Not only vectors

* The device records the air temperature on an
hourly basis and does it throughout the month.

 This gives us a total of 24 * 31 = 744 values. ; {:

= float temp[31][24];

* float sum = 0.0, average;

for(int day = 0; day < 31; day++)
- sum +=temp[day][11];

= average = sum/ 31,

cout << "Average temperature at noon: "
<< endl;

Not only vectors

float temp[31][24];
float max =-100.0;

for(int day = 0; day < 31; day++)
for(int hour = 0; hour < 24; hour++)
if(temp|day][hour] > max)
max = temp|day|[hour];
cout << "The highest temperature was " << max << end|;

Not only vectors

float temp|31]/24/;
int hotdays = 0;

for(int day = 0; day < 31; day++)
if(temp[day][11] >= 20.0)
hotdays++;
cout << hotdays <<" days were hot.";

Not only vectors

float temp(31](24];
intd,h;

for(d =0; d < 31; d++)
for(h =0; h < 24; h++)
temp[d][h] =0.0;

I | Not only vectors

 The “C++" [anguage does not limit the number
of the array's dimensions.

int guests|3//15//20/;

I | Structures — why do we need
them?

« Astring is little more than a type

« Variables of type string may be assigned with
the same operators as any other variable

string student_name|100000];

* For example, suppose that the first registered
student is Mr. Bond (James Bond).

= student_name|[0] = "Bond";

I | Structures — why do we need
them?

float student time[100000];

« Mr. Bond has spent three hours and thirty
minutes studying our course.

= student_time[0] = 3.5;

I | Structures — why do we need
them?

* The main issue here is that the data concerning
the same object (a student) is dispersed
between three variables, although it should
logically exist as a consolidated unit.

« Can we use an aggregate whose elements
could be of different types?

= A structure can contain any number of any
elements of any type.

tructures — Why do struct STUDENT {

string name;

e need them? float time,

int recent_chapter;

. The declaration of the structure —

= the declaration of the structure always starts with the keyword

struct {:
= there is a so-called struct tag after the keyword (STUDENT in o
this case); it's the name of the structure itself; there is a widely

accepted custom of composing structure tags with capital letter
simply to distinguish them from ordinary variables {:}
= here comes the opening curly bracket - a signal that the
declaration of fields begins at this point o

= our structure has three fields: the first is a string and is cafled
name; the second is a float and is called time; the third is ang
and it's called recent_chapter

e need them? float time,

int recent_chapter;

I Ii/tructures —why do i nomer

 The declaration of variable b

struct STUDENT stdnt;
STUDENT stdnt2;

« selection operator designed for structures and
IS denoted as a single character . (dot).

= stdnt.time = 1.5;

I tructures —why do sruct STUDENT
e need them? floattime

int recent_chapter;
b
STUDENT STDNTS[100000];

stndts[0].name = "Bond";
stndts[0].time = 3.5;
stdnts[0].recent_chapter = 4;

I | Structures — why do we need

them?
» We can also use the structure tag to struct DATE {
it vear
declare an array of structures: it ot
int day;

= DATE Visits[100]; '
= Visits[0].year = 2012; |
Visits[0].month = 1,
Visits[O].day = 1;

I | Structures — why do we need

them?
* struct DATE { struct DA_I-.E{
int year, month, day; e
} DateOfBirth, Visits[100]; int day;

b
 DATE current_date;

I | Structures — why do we need

them?
« A structure can be a field inside another
structure.
struct STUDENT {
string name;
float time;

int recent_chapter;
struct DATE last_visit;
} HarryPotter;

« HarryPotter.last_visit.year = 2012;
HarryPotter.last_visit.month = 12;
HarryPotter.last_visit.day = 21,

I | Structures — a few important rules

« A structure’s field names may overlap with the
tag names and that’s not a problem, although it

may cause you some difficulty in reading and
understanding the program.

struct STRUCT {
int STRUCT;
| Structure;

Structure.STRUCT = 0; /* STRUCT is a field name here */

I | Structures — a few important rules

* It may be the case that the particular compiler
you're working with doesn't like it when a
structure’s tag name overlaps with the variable's
name

struct STR {
int field;

} Structure;
int STR;

Structure.field = 0;
STR=1;

Structures — a few important rules

« Two structures can contain fields with the
same names

struct |
int f1;
} stri;

struct {
char f1;
} str2;

strl.f1 =32;
str2.f1 = str1.f1;

I | Initializing structures

* You can Initialize your structures as early as at
the time of declaration.

* The structure’s initiator is enclosed in curly
brackets and contains a list of values assigned
to the subsequent fields, starting from the first:

struct DATE date = {2012, 12, 21 };

= date.year = 2012;
= date.month = 12;
= date.day = 21;

I | Initializing structures

struct STUDENT he ={ "Bond", 3.5, 4, { 2012, 12, 21 }};

* he.name ="Bond";

* he.time = 3.5;

* he.recent_chapter = 4,
* he.last_visit.year = 2012
* he.last_visit.month = 12;
* he.last_visit.day = 21,

Nno
Nno
Nno
Nno
no
no

000
000
000
000
000

000

Initializing structures

y.name ="
y.time = 0.0;
y.recent_chapter = 0;

Y.
Y.
Y.

ast_visit.year =0
ast_visit.month = 0O;
ast_visit.day = 0;

Outline

1. Advanced flow control and data aggregates

2. Extending expressive power: pointers,
functions and memory

I | Pointers — the absolute basics

 Pointers are used to store information about
the location (address) of any other data.

« Try to get this important difference:

= the value of the variable is what the variable stores;

= the address of the variable is information about whe
this variable is placed (where it lives)

e

O

I | Pointers — the absolute basics

* This declaration sets up a variable named p. It
Isn't an int - the asterisk means that p is a
pointer and will be used to store information
about the location of the data of type int.

it >*p:

I | Pointers — the absolute basics

« A pointer that is assigned a value of zero is
called a null pointer

p=0;

 The NULL symbol is actually equal to zero. It
looks like a variable but you can’'t modify its
value. It's a so-called macro.

P =NULL;

I | How to assign a value?

* We can assign the pointer with the value which
points to any already existing variable.

P = &i;

 After completing the assighment, the p variable
will point to the place where the i variable is
stored in the memory

I | How to get a value

« Dereferencing is an operation where the
pointer variable (as we'll see later, it's not only
a variable, but also an expression that yields a
pointer) becomes synonymous with the value
It points to.

intdivar, *ptr:

I | How to get a value

* We assign the value of 2 to the ivar variable

Wwvar =-2: XS
« We make the ptr pointer point to the ivar variable

ptr = &ivar; {:}

* The following invocation brings up 2 to the © O

cout << *ptr:

I | How to set a value

 How do we set a value pointed to by the pointer?

-*pt(r =4 L

I | Sizeof operator

« The operator provides information on how many
bytes of memory its argument occupies

sizeof

inti; charc; chartab/10]/;

| =sizeof c; i=sizeof tab:

I | Sizeof operator

 What will the result be?

char tab/101; inti;

i = sizeof tab[1]: | = sizeof i;

Sizeof operator

#include <iostream>
using namespace std;

int main(void) {
cout << "This computing environment uses:" << end|;
cout << sizeof(char) << " bytes for chars" << endl;
cout << sizeof(short mt) << " bytes for shorts" << endl;
cout << sizeof(int) << bytes for ints" << endl;
cout << sizeof(long int) << " bytes for longs" << end|;
cout << sizeof(float) << b\,rtes for floats" << endl;
cout << sizeof(double) << " bytes for doubles" << endl;
cout << sizeof(bool) << " byte for bools" << end|;
cout << sizeof(int *) << " bytes for pointers" << endl;
return O;

Pointers vs. arrays

« What do pointers and arrays have in common?

int *Ptr, Arr' 3/

* The two assignments that follow the declaration
will set Ptr to the same value.

int *Ptr, Arr|3/;
Ptr = &Arr[0];
Ptr = Arr;

ptr

Arr [0] Arr [1] Arr [2]

The pointers' arithmetic

* The pointers' arithmetic is significantly different from the
Integers' arithmetic as it is relatively reduced and allows

the following operations only: i::

adding an integer value to a pointer giving a pointer (ptr + int e
ptr)

subtracting an integer value from a pointer giving a pointer (p
— Int — ptr)

subtracting a pointer from a pointer giving an integer (ptr —

— int) o
comparing the two pointers for equality or inequality (SLQh a
comparison gives a value of type int representing true or fa}#§
(ptr == ptr — int; ptr I= ptr — int)

&
=
2
>
%

The pointers' arithmetic

int *ptrl, *ptr2, array|3}, i;

ptrl = array;
* ptr2 points to the first element of the array
otr2 = ptrl;

array[0] array [1]
\ \ o

I | The pointers' arithmetic

* We can check if the two pointers are equal
if(ptr2 == ptrl) {

}

I | The pointers' arithmetic

 It's determined how many bytes of memory the type
occupies (we use the sizeof operator for this purpose) -

In our case it will be sizeof (int) {:
- the value we want to add to the pointer is multiplied by ¢

the given size
ptr2 = ptr2 + 1;
ptr2++;

A \ N

The pointers' arithmetic

ptrl = ptrl + 2;

\ A

The pointers' arithmetic

ptr2 = ptr2 —1;

I | What Is a function?

« Afunction is a kind of box (not always black) that
can do something useful

* In general, we can divide functions into two {:
groups: “

= functions written by someone else (not you) which ar€
made available by the environment, sometimes callg
predefined or library functions
= functions written by you

I | What Is a function?

- Each function is characterized by the following
traits:
" Name
= parameters
= type of result

float square(float x);

What Is a function?

« Transforming a declaration into a definition
requires us to add a body

float square(float x)

{

float result;

result =x * x;
return result;

I | First function

#include <iostream>

using namespace std;

float square(float x|

{
float result;
result = x * x;
return result;

}

int main(void) {
float arg = 2.0;
cout << "The second power of " << arg << " is " << square(arg) << end|;
return O;

First function

#include <iostream>

using namespace std;

float square(float);

int main(void) {
float arg = 2.0;
cout << "The second power of " << arg << " is " << square(arg) << end|;
return O;

float square(float x)
{
float result;
result = x * x;
return result;

Defining functions

return_type function_name (parameters_list)

{
function_body;

Defining functions

#include <iostream>
using namespace std;

void Greet(void)

{

cout << "Ave user!" << end];
1
I

void GreetManyTimes(int howmanytimes)

{
while(howmanytimes > 0)
Greet();
howmanytimes--;

1
i)

int main(void)

{

int sizeofego;

cout << "How big is your ego? [km]" << endl;
cin >> sizeofego;

GreetManyTimes(1 + sizeofego);

return O;

[o—

Example functions

#include <iostream>

using namespace std;

float FahrenheitToCelsius(float temp)

{
}

return ((temp - 32.0) * 5.0) / 9.0;

void TestTheFunction(float temp) {

cout << "Fahrenheit " << temp << " corresponds to " <<

FahrenheitToCelsius(temp) << " Centigrade" << endl;

}

int main(void)

{

TestTheFunction(32.0);
TestTheFunction(212.0);
TestTheFunction(451.0);
return O;

I | Example functions

* We expect the program to produce the following
output:
= Fahrenheit 32 corresponds to O Centigrade {:
= Fahrenheit 212 corresponds to 100 Centigrade O
= Fahrenheit 451 corresponds to 232.778 Centigrade{:\;]

The Invocation syntax

* A function may:

= return a value when it has a type name in front of its
name or it doesn’t have the type name there (in this {:
case the function is considered as returning anint o
value); such a function has a result and may have an

effect, too {:}
= return nothing when the void keyword is in front of

Its name; such a function doesn't have a result and o

we can expect that it has an effect

| The invocation syntax

void VoidFunction(int par) { ... ; return; ;

int NonVoidFunction(int par) { ... ; return par * par; |

* The only acceptable form of the VoidFunction
Invocation looks like this:

= VoidFunction(2);
 the NonVoidFunction can be invoked in the
following two ways:

= value = NonVoidFunction(2);
= NonVoidFunction(2);

Side effects

* Any function needs to have the abillity to
communicate with its environment.

* We already know two kinds of communication {:
like this: N

* transferring data to a function using actual
parameters whose values are assigned to formal
parameters

= transferring data from a function using the o O
function's result; note that only one value may bg
transferred by such means because the syntax (SSrET
return statement allows you to specify only one

Using a global variable

#include <iostream>
using namespace std;
int globvar = 0;

void func(void)

{
cout << "Thank you for invoking me :)" << end|;
globvar++;

}

int main(void)
{
for(inti=0;i<5; i++)
func();
cout << end| << "The function enjoyed " << globvar <<
"times" << endl;
return O;

Passing parameters by value

#include <iostream>
using namespace std;

void AmlAbleToChangeMyParameter(int param)

{

cout << "-mmmmmmemo " << endl;

cout << "| have got: " << param << end|;

param++;

cout << "I'm about to give back: " << param << end|;
cout << "-mmmmmmmmo "<< endl;

int main(void)

{

intvar=1;

cout << "var =" << var << end|;
AmlAbleToChangeMyParameter|(var);
cout << "var =" <<var << endl;
return O;

I Passing parameters by reference

#finclude <iostream>
using namespace std;

void AmlIAbleToChangeMyParameter(int ¶m)

{

cout << "-mmmmemaen " << endl;

cout << "| have got: " << param << end|;

param++;

cout << "I'm about to give back: " << param << end|;
cout << "-mmmmemmm " << endl;

int main(void)

{

intvar=1;

cout << "var =" << var << end|;
AmlAbleToChangeMyParameter(var);
cout << "var =" << var << end|;
return O;

I Passing parameters by reference

* You can mix parameters of both kinds if you find
It useful.

#finclude <iostream>
using namespace std;

void MixedStyles(int bval, int &bref)

{
bref = bval + 1;

}

int main(void)

{

int varl =1, var2;

MixedStyles(varl, var2);
cout << "varl =" <<varl << ", var2 =" << var2 << end|I;
return O;

Passing parameters by reference

* The “passing by reference” method has one

Important and obvious limitation.

If a parameter is declared as passed by
reference (so it is preceded by the & sign) its
corresponding actual parameter must be a
variable.

An actual parameter referring to a “passed by
value” formal parameter may be an expression
in general, so we can use not only a variableigpe®
also a literal, or even a function invocation's
result.

I Passing parameters by reference

void ByRef(int &par)

{
par = 0;

}

void ByVal(int par)

{
par = 0;

}

 All the following invocations are permitted:
= ByVal(i);
= ByVal(i + 2);
= ByVal(intfun(0));

Passing parameters by value

* |t is possible to utilize “passing by value” and be
able to propagate the value outside the function

#include <iostream>
using namespace std;
void ByPtr(int *ptr)

*ptr = *ptr + 1;

}
int main(void)

int variable = 1;
int *pointer = &variable;

ByPtr(pointer);
cout << "variable = " << variable << end];
return O;

}

I | Parameters — cont.

« We're now going to rewrite our Greet function to
make it more flexible. We want it to:

= be able to emit any greeting, not only the one
predefined in the source code, O

= be able to emit the greeting more than once, on the
Invoker's demand.

* This means that our NewGreet has to have two
parameters intended to:
= store the greeting
= store the number of greeting repetitions

&

Parameters — cont.

#include <iostream>
using namespace std;
void NewGreet(string greet, int repeats)

{
for(inti =0;i < repeats; i++)
cout << greet << end|;

}

int main(void)

{
NewGreet("Hi!", 5);
return O;

I | Default parameters — a simple
example

#finclude <iostream>
using namespace std;
void NewGreet(string greet, int repeats = 1)
{
for(inti = 0;i < repeats; i++)
cout << greet << end|;

}

int main(void)

{
NewGreet("Hello", 2);
NewGreet("Good morning");
NewGreet("Hi", 1);
return O;

#include <iostream>

Default parameters — a simple
example

* The program will produce T
the following output: | |

int main(void)
{

NewGreet("Hello", 2);
NewGreet("Good morning");
NewGreet("Hi", 1);

Hello ;e
Hello

Good morning

Hi

Default parameters — a simple
example

* Is it possible to have more than one default
parameter in one function?

#include <iostream>
using namespace std;
void NewGreet(string greet = "Good morning", int repeats = 1)
{
for(inti=0; i< repeats; i++)

cout << greet << end|;

]
J

int main(void)

{
NewGreet("Hello", 2);
NewGreet("Hi");
NewGreet();
return O;

[N

I | Different tools for different tasks

A function to find the larger of two float numbers

float max(float a, float b)
{
if(a>b)
return a;
else
return b;

I | Max — extended version

float max(float a, float b, float c)

{
Int m = a;
if(b >m)
m = b;
if(c>m)
m = C;
return m;

}

* Previous function
= x = max(max(a,b),c);

How to find the best candidate?

void PlayWithNumber(int x) { ... |
void PlayWithNumber(float x) { ... }

PlayWithNumber(1);

 Which of these two overloaded functions Is the
best candidate for the invocation?

How to find the best candidate?

void PlayWithNumber(int x) { ... }
void PlayWithNumber(float x) { ... }

PlayWithNumber(1.0);

* Which of these two overloaded functions is the
best candidate for the invocation?
= There Is no good candidate
= PlayWithNumber(1.0f);

A new operator: a three-argument
one

* This operator works as follows:
= calculates the value of the expressionl

= if the calculated value is non-zero, the operator {:
returns the value of expression2, completely o
neglecting expression3

= if the value calculated in step 1 is zero, the operato{jl
returns the value of expression3, omitting
expression2.

expressionl ? expression2 : expression3

I | A new operator: a three-argument
one

e 1=1>071:0;

if(i > 0)
e 1=1;
else

« 1=0

float max(float a, float b)
{

returna>b?a:b;

}

>
(o
S
-
S
o)
=
=
O
0

Sorting an array

int numbers[5]; // array to be sorted
int aux; /[auxiliary variable for swaps

// we need 5 — 1 comparisons — why?
for(inti=0;i<4;i++) |
// compare adjacent elements
if{ numbers|[i] > numbers|i+1]) {
/* if we went here it means that we have to swap the elements */
aux = numbers|il;
numbers[i] = numbers|i + 1];
numbers[i + 1] = aux;

}

o

Sorting an array

int numbers/5];
int aux;
bool swapped;

do { // we will decide if we need to continue this loop
swapped = false; // no swap occured yet

for(inti=0;i<4;i++)

if(numbers|i] > numbers|i + 1]) {
swapped = true;
aux = numbers|il;
numbers|i] = numbers|i + 1};
numbers|i + 1] = aux;

}

} while(swapped);

int main(void) {

int numbers[5];

int aux;

bool swapped;

// ask the user to enter 5 values

for(inti=0;i<5;i++) {
cout << endl << "Entervalue #" <<i+1<<": ";
cin >> numbers|il;

s
#include <iostream>
using namespace std; . .
Final version

}

// sort them
do {
swapped = false;
for(inti=0;i<4;i++){
if(numbers[i] > numbers[i + 1]) {
swapped = true;
aux = numbers|il;
numbers|i] = numbers[i + 1];
numbers|i + 1] = aux;
}
}
} while(swapped);
// print results
cout << end| << "Sorted array: " << end];
for(inti=0;i<5;i++)
cout << numbers[i] << " ";
cout << endl;
return O;

I | Memory on demand

float *array = new float|20];
Int count = new Int;

delete || array;
delete count;

I | Memory on demand

« dynamic arrays

#include <iostream>
using namespace std;

int main(void) {
float *arr;

arr = new float|5];

for(inti=0;i<5;i++)
arrlil =i *i;

for(inti=0;i<5;i++)
cout << arrli] << end|;

delete [] arr;

return O;

}

#include <iostream>

using namespace std;

int main(void) |
int *numbers, how_many_numbers;
int aux;
bool swapped;

cout << "How many numbers are you going to sort? ";

cin >>how_many numbers;

if(how_many _numbers <=0 | | how_many_numbers > 1000000) {
cout << "Are you kidding?" << end|;

return 1;
1

i)
numbers = new int(how _many numbers];

for(inti=0;i<how_many numbers; i++) {
cout << "\nEnter the number #" <<i+1<<": ",

cin >> numbers|i];

1
I

do {
swapped = false;
for(inti=0;i<how _many numbers - 1; i++)
if(numbers[i] > numbers|i + 1]) {
swapped = true;
aux = numbers[i];
numbers|i] = numbers[i + 1];
numbers|i + 1] = aux;
}
} while(swapped);
cout << endl << "The sorted array:" << endl;
for(inti=0; i <how_many numbers; i++)
cout << numbers|i] << " ";
cout << endl;
delete [| numbers;
return O;

77T

Arrays of pointers

| Arrays of pointers

int **ptrarr;
ptrarr = new int * [rows];

for(intr =0; r <rows; r++)
ptrarr[r| = new int[columns];

Arrays of pointers

otrarr[r][c] =

(t '

0

I | Arrays of pointers

 ptrarr[2][1]

Arrays of pointers

#include <iostream:>
using namespace std;

int main(void)
T
L

introws =5, cols = 5;
int **arr;
// allocate and initialize the array
arr = new int * [rows];
for (intr=0; r < rows; r++) |
arr(r] = newint[r+ 1J;
for(intc=0; c<=r; c++)
arr[rilc] =(r+1)*10+c+1;
// print the array
for(intr =0; r < rows; r++) |
for(intc=0; c<=r; c++)
cout << arrfr][c] <<"";
cout << endl;
// free the array
for(int r = 0; r < rows; r++)
delete [] arrr];
delete [] arr;
return O;

