
Maciej Sobieraj

Lecture 2

Outline

1. Advanced flow control and data aggregates

2. Extending expressive power: pointers,

functions and memory

Arrays

• Why?

 It may be that we have to read, store, process,

and finally, print dozens, maybe hundreds,

perhaps thousands of numbers.

• store five values of type int

 the elements in an array are numbered starting

from 0

Arrays

• Assigning a value to a chosen element of an

array

• A value stored in the third element of the array

Arrays

• The sum of all values stored in the numbers

array

• Assigning the same value (e.g. 2012) to all

elements of the array

Arrays

• What the code below does?

Array initialization

• The vector initiator is simply a list of values

enclosed inside curly brackets.

• We didn't specify the size of the array but

provided an initiator.

Not only ints

Not only vectors

• two dimensional array

Not only vectors

• The device records the air temperature on an

hourly basis and does it throughout the month.

• This gives us a total of 24 * 31 = 744 values.

 float temp[31][24];

 float sum = 0.0, average;

 for(int day = 0; day < 31; day++)

 sum += temp[day][11];

 average = sum / 31;

 cout << "Average temperature at noon: " << average

<< endl;

Not only vectors

Not only vectors

Not only vectors

Not only vectors

• The “C++” language does not limit the number

of the array's dimensions.

Structures – why do we need

them?

• A string is little more than a type

• Variables of type string may be assigned with

the same operators as any other variable

• For example, suppose that the first registered

student is Mr. Bond (James Bond).

 student_name[0] = "Bond";

Structures – why do we need

them?

• Mr. Bond has spent three hours and thirty

minutes studying our course.

 student_time[0] = 3.5;

Structures – why do we need

them?

• The main issue here is that the data concerning

the same object (a student) is dispersed

between three variables, although it should

logically exist as a consolidated unit.

• Can we use an aggregate whose elements

could be of different types?

 A structure can contain any number of any

elements of any type.

Structures – why do

we need them?

• The declaration of the structure →
 the declaration of the structure always starts with the keyword

struct

 there is a so-called struct tag after the keyword (STUDENT in

this case); it's the name of the structure itself; there is a widely

accepted custom of composing structure tags with capital letters

simply to distinguish them from ordinary variables

 here comes the opening curly bracket - a signal that the

declaration of fields begins at this point

 our structure has three fields: the first is a string and is called

name; the second is a float and is called time; the third is an int

and it’s called recent_chapter

Structures – why do

we need them?

• The declaration of variable

• selection operator designed for structures and

is denoted as a single character . (dot).

 stdnt.time = 1.5;

Structures – why do

we need them?

stndts[0].name = "Bond";

stndts[0].time = 3.5;

stdnts[0].recent_chapter = 4;

Structures – why do we need

them?

• We can also use the structure tag to

declare an array of structures:

 DATE Visits[100];

 Visits[0].year = 2012;

Visits[0].month = 1;

Visits[0].day = 1;

Structures – why do we need

them?

• struct DATE {

 int year, month, day;

} DateOfBirth, Visits[100];

• DATE current_date;

Structures – why do we need

them?

• A structure can be a field inside another

structure.

• HarryPotter.last_visit.year = 2012;

HarryPotter.last_visit.month = 12;

HarryPotter.last_visit.day = 21;

Structures – a few important rules

• A structure’s field names may overlap with the

tag names and that’s not a problem, although it

may cause you some difficulty in reading and

understanding the program.

Structures – a few important rules

• It may be the case that the particular compiler

you’re working with doesn't like it when a

structure’s tag name overlaps with the variable's

name

Structures – a few important rules

• Two structures can contain fields with the

same names

Initializing structures

• You can initialize your structures as early as at

the time of declaration.

• The structure’s initiator is enclosed in curly

brackets and contains a list of values assigned

to the subsequent fields, starting from the first.

 date.year = 2012;

 date.month = 12;

 date.day = 21;

Initializing structures

• he.name = "Bond";

• he.time = 3.5;

• he.recent_chapter = 4;

• he.last_visit.year = 2012

• he.last_visit.month = 12;

• he.last_visit.day = 21;

Initializing structures

• nobody.name = "";

• nobody.time = 0.0;

• nobody.recent_chapter = 0;

• nobody.last_visit.year = 0

• nobody.last_visit.month = 0;

• nobody.last_visit.day = 0;

Outline

1. Advanced flow control and data aggregates

2. Extending expressive power: pointers,

functions and memory

Pointers – the absolute basics

• Pointers are used to store information about

the location (address) of any other data.

• Try to get this important difference:

 the value of the variable is what the variable stores;

 the address of the variable is information about where

this variable is placed (where it lives)

Pointers – the absolute basics

• This declaration sets up a variable named p. It

isn't an int - the asterisk means that p is a

pointer and will be used to store information

about the location of the data of type int.

Pointers – the absolute basics

• A pointer that is assigned a value of zero is

called a null pointer

• The NULL symbol is actually equal to zero. It

looks like a variable but you can’t modify its

value. It’s a so-called macro.

How to assign a value?

• We can assign the pointer with the value which

points to any already existing variable.

• After completing the assignment, the p variable

will point to the place where the i variable is

stored in the memory

How to get a value

• Dereferencing is an operation where the

pointer variable (as we’ll see later, it’s not only

a variable, but also an expression that yields a

pointer) becomes synonymous with the value

it points to.

How to get a value

• We assign the value of 2 to the ivar variable

• We make the ptr pointer point to the ivar variable

• The following invocation brings up 2 to the

screen

How to set a value

• How do we set a value pointed to by the pointer?

sizeof operator

• The operator provides information on how many

bytes of memory its argument occupies

sizeof operator

• What will the result be?

sizeof operator

Pointers vs. arrays

• What do pointers and arrays have in common?

• The two assignments that follow the declaration

will set Ptr to the same value.

The pointers' arithmetic

• The pointers' arithmetic is significantly different from the

integers' arithmetic as it is relatively reduced and allows

the following operations only:

 adding an integer value to a pointer giving a pointer (ptr + int →

ptr)

 subtracting an integer value from a pointer giving a pointer (ptr

– int → ptr)

 subtracting a pointer from a pointer giving an integer (ptr – ptr

→ int)

 comparing the two pointers for equality or inequality (such a

comparison gives a value of type int representing true or false)

(ptr == ptr → int; ptr != ptr → int)

The pointers' arithmetic

• ptr2 points to the first element of the array

The pointers' arithmetic

• We can check if the two pointers are equal

The pointers' arithmetic

• It’s determined how many bytes of memory the type

occupies (we use the sizeof operator for this purpose) -

in our case it will be sizeof (int)

• the value we want to add to the pointer is multiplied by

the given size

The pointers' arithmetic

The pointers' arithmetic

What is a function?

• A function is a kind of box (not always black) that

can do something useful

• In general, we can divide functions into two

groups:

 functions written by someone else (not you) which are

made available by the environment, sometimes called

predefined or library functions

 functions written by you

What is a function?

• Each function is characterized by the following

traits:

 name

 parameters

 type of result

What is a function?

• Transforming a declaration into a definition

requires us to add a body

First function

First function

Defining functions

Defining functions

Example functions

Example functions

• We expect the program to produce the following

output:

 Fahrenheit 32 corresponds to 0 Centigrade

 Fahrenheit 212 corresponds to 100 Centigrade

 Fahrenheit 451 corresponds to 232.778 Centigrade

The invocation syntax

• A function may:

 return a value when it has a type name in front of its

name or it doesn’t have the type name there (in this

case the function is considered as returning an int

value); such a function has a result and may have an

effect, too

 return nothing when the void keyword is in front of

its name; such a function doesn't have a result and

we can expect that it has an effect

The invocation syntax

• The only acceptable form of the VoidFunction

invocation looks like this:

 VoidFunction(2);

• the NonVoidFunction can be invoked in the

following two ways:

 value = NonVoidFunction(2);

 NonVoidFunction(2);

Side effects

• Any function needs to have the ability to

communicate with its environment.

• We already know two kinds of communication

like this:

 transferring data to a function using actual

parameters whose values are assigned to formal

parameters

 transferring data from a function using the

function's result; note that only one value may be

transferred by such means because the syntax of the

return statement allows you to specify only one value

Using a global variable

Passing parameters by value

Passing parameters by reference

Passing parameters by reference

• You can mix parameters of both kinds if you find

it useful.

Passing parameters by reference

• The “passing by reference” method has one

important and obvious limitation.

• If a parameter is declared as passed by

reference (so it is preceded by the & sign) its

corresponding actual parameter must be a

variable.

• An actual parameter referring to a “passed by

value” formal parameter may be an expression

in general, so we can use not only a variable but

also a literal, or even a function invocation's

result.

Passing parameters by reference

• All the following invocations are permitted:

 ByVal(i);

 ByVal(i + 2);

 ByVal(intfun(0));

Passing parameters by value

• It is possible to utilize “passing by value” and be

able to propagate the value outside the function

Parameters – cont.

• We’re now going to rewrite our Greet function to

make it more flexible. We want it to:

 be able to emit any greeting, not only the one

predefined in the source code,

 be able to emit the greeting more than once, on the

invoker's demand.

• This means that our NewGreet has to have two

parameters intended to:

 store the greeting

 store the number of greeting repetitions

Parameters – cont.

Default parameters – a simple

example

Default parameters – a simple

example

• The program will produce

the following output:

 Hello

 Hello

 Good morning

 Hi

Default parameters – a simple

example

• Is it possible to have more than one default

parameter in one function?

Different tools for different tasks

• A function to find the larger of two float numbers

Max – extended version

• Previous function

 x = max(max(a,b),c);

How to find the best candidate?

• Which of these two overloaded functions is the

best candidate for the invocation?

How to find the best candidate?

• Which of these two overloaded functions is the

best candidate for the invocation?

 There is no good candidate

 PlayWithNumber(1.0f);

A new operator: a three-argument

one

• This operator works as follows:

 calculates the value of the expression1

 if the calculated value is non-zero, the operator

returns the value of expression2, completely

neglecting expression3

 if the value calculated in step 1 is zero, the operator

returns the value of expression3, omitting

expression2.

A new operator: a three-argument

one

• i = i > 0 ? 1 : 0;

• if(i > 0)

• i = 1;

• else

• i = 0

Sorting an array

Sorting an array

Sorting an array

 Final version

Memory on demand

Memory on demand

• dynamic arrays

Arrays of pointers

Arrays of pointers

Arrays of pointers

Arrays of pointers

• ptrarr[2][1]

Arrays of pointers

• every row may be of a different length

Arrays of pointers

