
Maciej Sobieraj

Lecture 4

Outline

1. Object programming essentials

Class – what is it?

Class – what is it?

Object – what is it?

• A class is a set of objects.

• An object is a being belonging to a class.

• An object is an incarnation of requirements,

traits and qualities assigned to a specific class.

• For example: any personal car is an object that

belongs to the “wheeled vehicles” class.

What does any object have?

• The object programming convention assumes

that every existing object may be equipped with

three groups of attributes:

 an object has a name that uniquely identifies it within

its home namespace (although there may be some

anonymous objects, too)

 an object has a set of individual properties that make

it original, unique or outstanding (although there is the

possibility that some objects may have no properties

at all)

 an object has a set of abilities to perform specific

activities that can change the object itself or some of

the other objects

What does any object have?

• Here are two sample phrases that are good

examples:

 “Max is a large cat who sleeps all day”

• Object name = Max

• Home class = Cat

• Property = Size (large)

• Activity = Sleep (all day)

 “A pink Cadillac went quickly”

• Object name = Cadillac

• Home class = Wheeled vehicles

• Property = Colour (pink)

• Activity = Drive (quickly)

Why all this?

• Object programming is the art of defining and

expanding classes.

• Class is a model of a very specific part of reality

reflecting properties and activities found in the

real world.

The very first object

• The newly defined class becomes an equivalent

of a type, and we can use it as a type name.

• Imagine that we want to create one object of the

OurClass class.

Stack aka LIFO

• A stack is a structure developed to store data

in a very specific way.

 The alternative name for a stack is LIFO. This is an

abbreviation for a description of the stack’s behaviour:

“Last In – First Out”.

• We also assume that the element at index 0 is at

the bottom of the stack.

Stack pointer

• We need a variable that can be responsible for

storing a number of elements currently stored

on the stack.

Push

• We’re now ready to define a function that places

a value onto the stack.

Pop

• Now it’s time for the function to take a value off

the stack.

The stack in action

Stack from scratch

Stack from scratch

• This kind of data is called private in object

programming. It’s private because only the class

itself may access and modify it.

• If we want to mark some part of a class’s data as

private, we have to add the keyword before the

declarations.

Stack from scratch

• Now it’s time for two functions that implement

push and pop operations. The “C++” language

assumes that a function of this kind (being a

class activity) may be described in two different

way:

 inside the class, when the class body contains a full

implementation of the method

 outside the class, when the body contains only the

function header; the function body is placed outside

the class

Stack from scratch

• We want to invoke functions to push and pop

values. This means that they both should be

accessible to every class’s user This type of

component is called “public” and we have to

use a keyword to emphasize this fact.

Stack from scratch

• The functions placed outside the class body

need to be described in a very specific way.

Their names should be qualified using the

home class name and the “::” operator.

Stack from scratch

• Specialized function invoked implicitly every time

a new stack is created.

 “constructor” is responsible for the proper

construction of each new object of the class.

Stack from scratch

• Note how we invoke a function from an object.

• This is the same convention we’ve already used

for strings.

Stack from scratch

• We want a new stack with new capabilities.

• In other words, we want to construct a subclass

of the Stack class.

• Any object of the AddingStack class can do

everything that each Stack class’ object does.

Stack from scratch

• We’ll start with the implementation of the push

function. This is what we expect from it:

 to add the value to the sum variable

 to push the value onto the stack

Stack from scratch

• We’ll start with the implementation of the push

function. This is what we expect from it:

 to add the value to the sum variable

 to push the value onto the stack

Stack from scratch

Stack from scratch

• Note the phrase “: Stack()”. It’s a request to

invoke the superclass constructor before the

current constructor starts its work.

Stack from scratch

Stack from scratch

Class components

• Since all the components are declared without the use of

an access specifier (neither a public nor private

keyword was added among the declarations) all three

components are private. This means that a class

defined in the following way:

class A {

 Type Var;

};

• should be read as:
class A {

 private:

 Type Var;

};

Access specifiers

• The class has been rebuilt in order to show the

use of access specifiers.

Creating an object

• The public components are available for use.

You can do this:

 the_object.setVal(0);

• The private components are hidden and

unavailable. You mustn’t do this:

 the_object.value = 0;

Overriding component names

• The setVal function uses a parameter called

value. The parameter overrides the class

component called value.

"this" pointer

• We assume that each object is equipped with a

special component containing the following

traits:

 its name is this

 it mustn’t be declared explicitly (it’s a keyword) so it

may not be overridden

 it’s a pointer to the current object – each object has

its own copy of the this pointer

"this" pointer

• The general rule says that:

 if S is a structure or class and S has a component

named C and

 if p is a pointer to a structure of type S

 then the C component may be accessed in the two

following ways:

 (*p).C // p is explicitly dereferenced in order to

access the C component

 p->C // p is implicitly dereferenced in order to

access the C component

"this" pointer

Qualifying component names

• If any class function body is given outside the

class body, its name must be qualified with the

home class name and the “::” operator.

Qualifying component names

• Class function names may be overloaded just

like ordinary function names.

 The first has one parameter and sets the value field

with the value of the parameter.

 The second has no parameters and sets the value

field with -2.

Constructors

• A function with a name identical to its home

class name is called a constructor.

• The constructor is intended to construct the

object during its creation i.e. to initialize field

values, allocate memory, create other objects,

etc.

• The constructor may access all object

components like any other class member

function but should not be invoked directly.

Constructors

• The constructor must not be declared using

return type specifications, including void type

specifications.

• Declaring the object of the class, e.g. by doing it

in the following way:

 Class object;

• implicitly invokes the constructor.

• Note – you’re not allowed to do either this:

 object.Class()

 Class::Class();

Constructors

• Class object;

• cout << object.getVal() << endl;

Overloading constructor names

• Constructors may be overloaded too, depending

on specific needs and requirements.

 Class object1, object2(100);

 cout << object1.getVal() << endl;

 cout << object2.getVal() << endl;

Overloading constructor names

• If a class has a constructor (or more precisely, at

least one constructor), one of them must be

chosen during object creation

 Class object(2);

 Class object;

Copying constructors

• There is a special kind of constructor intended to

copy one object into another.

• If the copying constructor doesn’t exist within a

particular class and the initiator is actually used

during the declaration of an object, its content

will be actually (in a literal meaning) copied “field

by field”

• Note that the keyword const used in the

parameter declaration is a promise that the

function won’t attempt to modify the values

stored in the referenced object.

Copying constructors

Memory leaks

• Failure to clean the memory will cause a

phenomenon named “memory leaking”, where

the unused (but still allocated!) memory grows in

size, affecting system performance.

• We can imagine that object creation consists of

two phases:

 the object itself is created and a part of the memory

is implicitly allocated to the object

 the constructor explicitly allocates another part of

the memory

• Unfortunately, the memory explicitly allocated by

the constructor remains allocated.

Memory leaks

Destructors

• We can safeguard ourselves against this danger

by defining a special function called destructor.

Destructors have the following restrictions:

 if a class is named X, its destructor is named ~X

 a class can have no more than one destructor

 a destructor must be a parameter-less function

(note that the two last restrictions are the same – can

you explain why?)

 a destructor shouldn’t be invoked explicitly

Destructors

The “auto” keyword

• All the variables in your code belong to one of

two categories. They are:

 automatic variables, created and destroyed,

sometimes repeatedly, and automatically (hence

their name) during program execution

 static variables, existing continuously during the

whole program execution

• The “C” and “C++” programming languages

assume that all variables are automatic by

default unless they are declared explicitly as

static.

The “auto” keyword

The “auto” keyword

• The var variable exists even when the fun

function isn’t working, so the variable’s value is

preserved between subsequent fun invocations.

Instances of the class

• Every object created from a particular class is

named a class’s instance.

• None of these components really exist until the

first instance is created.

Instances of the class

• All the rules on the previous slide are true if they

refer to the non-static components of the class

(both fields and functions).

• A static component exists throughout the

whole life of the program. Moreover, there is

always only one component regardless of the

number of instances of the class.

• We can say that all the instances share the

same static components.

Static class variables

Static class variables

• This program produces the following output on

the screen:

 Static = 1, NonStatic = 10

 Static = 2, NonStatic = 20

Static class variables

• Note once again that the Counter field is

accessed directly when it’s being used inside the

class and with the “::” operator when it’s being

used outside the class. It’s also possible to

access the static variable through any of the

existing class instances, like this:

 cout << b.Counter ;

Static class variables

Static class variables

• The program will output the following lines to the

screen:

 2 instances so far

 4 instances

 Bye, bye!

Static class variables

Static class variables

• Note that any attempts to access the Counter

variable expressed like this:

 Class::Counter = 1;

• are strictly prohibited.

Static class variables

• The static function, like a static variable, may

also be accessed (or more precisely, invoked)

when no instances of the class have been

created.

• Note that the static function may be invoked

from inside the class, like this:

 HowMany();

• or by using any of the existing instances, like

this:

 b.HowMany();

Static class variables

Static vs. non-static components

• The coexistence of both static and non-static

components within a single class causes some

additional issues which we need to take into

consideration. We can define four particular events when

both types of components interact with one another.

• They are:

 a static component accesses a static component

 a static component accesses a non-static component

 a non-static component accesses a static component

 a non-static component accesses a non-static component

Static vs. non-static components

Static → static interaction

• The first test program (shown here →)

demonstrates a case when a static function

named funS2 tries to invoke another static

function named funS1.

Static → static interaction

Static → non-static interaction

• The second test program (shown here →)

demonstrates a case when a static function

named funS1 tries to invoke a non-static

function named funN1.

 This program cannot be successfully compiled.

Static → non-static interaction

Nonstatic → static interaction

• The third test case (you can find it here →)

refers to the situation where a non-static

function named funN1 invokes a static

function named funS1.

Nonstatic → static interaction

Nonstatic → non-static interaction

• Is it possible to invoke a non-static function from

within a non-static function

Pointers to objects

• Objects may also exist as dynamically created

and destroyed entities. In other words, objects

may appear on demand – when they’re needed

– and vanish in the same way.

Pointers to objects

Pointers to fields

• All the variables, including objects, brought to life

in the “ordinary” way (by declaration, not by the

use of the new keyword) live in a separate area

of memory called the stack. It’s a memory

region dedicated to storing all automatic

entities.

• The entities created “on demand” (by the new

keyword) are created in a specific memory

region usually called a heap.

Pointers to fields

• The object being stored in the heap must be

accessed in a way that resembles the access to

the dynamically allocated structures.

• You mustn’t use the ordinary “dotted” notation as

there’s no structure (object) which can play the

role of the left argument of the “.” operator

unless you dereference the pointer.

• You need to use the “arrow” (->) operator

instead.

Pointers to fields

• The object being stored in the heap must be

accessed in a way that resembles the access to

the dynamically allocated structures.

• You mustn’t use the ordinary “dotted” notation as

there’s no structure (object) which can play the

role of the left argument of the “.” operator

unless you dereference the pointer.

• You need to use the “arrow” (->) operator

instead.

Pointers to fields

Pointers to functions

• Member functions invoked for an object

accessed through the pointer have to be

accessed using the arrow operator, too.

Pointers to functions

Selecting the constructor

• If a class has more than one constructor, one of

them may be chosen during object creation. This

is done by specifying the form of the parameter

list associated with the class name.

• The list should be unambiguously compatible

with one of the available class constructors.

Selecting the constructor

Arrays of pointers to objects

Arrays of pointers to objects

Objects inside objects

• An object of any class may be the field of an

object of any other class.

Objects inside objects

 The conclusion is: constructors from inner objects (objects stored inside other objects)

are invoked before the outer object’s constructors start their work.

Objects inside objects

 The constructor invoked implicitly (sometimes called the default constructor) is the one

which has no parameters. The compiler will produce an error message

Objects inside objects

• If we want a constructor other than the

default one to be invoked during the creation of

an object which is part of another object

• we can present it in the following schematic way:
 Class(…) : inner_field_constr1(…), inner_field_constr2(…) { … }

• When the constructor is divided between the

declaration and the definition, the list of

alternative constructors should be associated

with the definition, not the declaration.

Objects inside objects

• The following snippet is correct:

class X {

 public:

 X(int z) { };

};

class Y {

 X x;

 public:

 Y(int z);

};

Y::Y(int z) : x(1) { };

