
Maciej Sobieraj

Lecture 5

Outline

1. Inheritance

1. Defining class hierarchy

2. Classes, inheritance and type compatibility

3. Polymorphism and virtual methods

4. Objects as parameters and dynamic casting

5. Various supplements

Defining a simple subclass

• We can use each class as a base (or a

foundation) to define or build another class (a

subclass).

• It’s also possible to use more than one class to

define a subclass.

• We can also write about superclasses as base

classes, and subclasses as derived classes.

Defining a simple subclass

Defining a simple subclass

• This class will serve as a superclass

Defining a simple subclass

• If we want to define a class named Y as a

subclass of a superclass named X, we use

the following syntax

• If there’s more than one superclass, we have to

enlist them all using commas as separators, like

this:

 class A : X, Y, Z { … };

Defining a simple subclass

• The Sub class introduces neither new variables

nor new functions.

• When we omit the visibility specifier, the

compiler assumes that we’re going to apply a

“private inheritance”.

Defining a simple subclass

• “private inheritance” means that all public

superclass components turn into private

access, and private superclass components

won't be accessible at all.

• We have to tell the compiler that we want to

preserve the previously used access policy.

We do this by using a “public” visibility specifier:

 class Sub : public Super {

 };

Defining a simple subclass

• Subclass has lost access to the private

components of the superclass.

• We cannot write a member function of the Sub

class which would be able to directly manipulate

the storage variable.

Defining a simple subclass

Defining a simple subclass

• The keyword protected means that any

component marked with it behaves like a

public component when used by any of the

subclasses and looks like a private

component to the rest of the world.

Defining a simple subclass

Defining a simple subclass

Defining a simple subclass

Outline

1. Inheritance

1. Defining class hierarchy

2. Classes, inheritance and type compatibility

3. Polymorphism and virtual methods

4. Objects as parameters and dynamic casting

5. Various supplements

Type compatibility – the simplest

case

• Each new class constitutes a new type of

data. Each object constructed on the basis of

such a class is like a value of the new type.

• This means that any two objects may (or may

not) be compatible in the sense of their types.

Type compatibility – the simplest

case

Type compatibility – the simplest

case

• The objects of the Cat class are not compatible

with the objects of the Dog class, although the

structure of both classes is identical. Neither of

the following assignments is valid and both of

them will cause a compiler error:

 a_dog = a_cat;

 a_cat = a_dog;

• Objects derived from classes which lie in

different branches of the inheritance tree are

always incompatible.

Type compatibility – more complex

case

• The Dog and Cat classes are now descendants

(to be precise, children) of the common base

class Pet.

• We’ve also equipped all the classes with

constructors.

• Our pets are also able to run.

Type compatibility – more complex

case

• Let’s summarize what we created.

 objects derived from the Pet class are able to run

 objects derived from the Dog and Cat classes are

able to run (they inherit this ability from their

superclass); they can also make sounds (note that

this skill is not available for objects of the Pet class)

• And so:

 Cat and Dog objects can do all the things Pets are

able to do

 Pets cannot do all the thing that Cat and Dog can do

Type compatibility – more complex

case

Type compatibility – more complex

case

• We can assume:

 objects of the subclass have at least the same

capabilities as the superclass objects

 objects of the superclass may not have the same

capabilities as the subclass objects

• This leads us to the following conclusion:

 objects of the superclass are compatible with

objects of the subclass

 objects of the subclass are not compatible with

objects of the superclass

Type compatibility – more complex

case

• This means that:

 you can do the following:

• a_pet = new Dog("Huckleberry");

• a_pet -> Run();

 but you cannot do anything like this:

• a_pet -> MakeSound();

 because Pets don’t know how to make sounds (in our

world of classes, at least)

 you are not allowed to do the following:

• a_dog = new Pet("Strange pet");

Type compatibility – more complex

case

ype compatibility – how to recover

the lost

• Why are we not allowed to command our pet to

make a sound?

• The problem comes from static checks made

by the compiler during the compilation

process.

• The compiler is convinced that pets cannot

make sounds and won’t allow us even to try to

do that.

Type compatibility – how to recover

the lost

• We can do this using the cast operators.

 static_cast<Dog *>(a_pet)

• forces the compiler to assume that a_pet is

(temporarily) converted into a pointer of type

Dog *.

Type compatibility – back to our

pets

Type compatibility – abusing

owner’s power

Type compatibility – abusing

owner’s power

• The compiler isn’t able to check if the pointer

being converted is compatible with the

object it points to.

• Full pointer validity verification is possible

when and only when the program is being

executed

• The “C++” language has a second conversion

operator designed especially for this case.

• Its name is somewhat suggestive:

dynamic_cast.

Type compatibility – final case

• The rule stating that objects lying at higher

levels are compatible with objects at lower

levels of the class hierarchy works even when

the inheritance chain is arbitrarily long.

Type compatibility – final case

Outline

1. Inheritance

1. Defining class hierarchy

2. Classes, inheritance and type compatibility

3. Polymorphism and virtual methods

4. Objects as parameters and dynamic casting

5. Various supplements

Overriding a method in the

subclass

• When a subclass declares a method of the

name previously known in its superclass, the

original method is overridden.

• The effects of the overriding may be reversed

(or voided) if you use the static_cast operator in

reverse.

Overriding a method in the

subclass

Overriding a method in the

subclass

Overriding a method in the

subclass

• Polymorphism is a method to redefine the

behaviour of a superclass (but only the one

that explicitly agrees to be treated in this way!)

without touching its implementation.

• The word “polymorphism” means that the one

and same class may show many (“poly” – like in

“polygamy”) forms (“morphs”) not defined by the

class itself, but by its subclasses.

Overriding a method in the

subclass

• The word virtual means that the method will be

redefined (replaced) at the level of the original

class.

Overriding a method in the

subclass

Overriding a method in the

subclass

Overriding a method in the

subclass

• We invoke the MakeSound method as part of

the Pet constructor.

• The program will output the following lines:

 Kitty the Pet says: Shh! Shh!

 Doggie the Pet says: Shh! Shh!

• This means that the binding between the original

functions and their polymorphic implementations

is established when the subclass object is

created, not sooner.

Overriding a method in the

subclass

Overriding a method in the

subclass

• The virtual method may be invoked not only from

outside the class but also from within.

• The code produces the following output:

 Kitty the Cat says: Meow! Meow!

 Doggie the Dog says: Woof! Woof!

Outline

1. Inheritance

1. Defining class hierarchy

2. Classes, inheritance and type compatibility

3. Polymorphism and virtual methods

4. Objects as parameters and dynamic casting

5. Various supplements

Passing an object as a function

parameter

• Any object may be used as a function

parameter and, vice versa, any function may

have a parameter as an object of any class.

• We can pass an object into a function: by

pointer and by reference.

Passing an object as a function

parameter

Passing an object by value

Passing an object of a subclass

Passing an object of a subclass

Passing an object of a subclass

• The expected output is:

 creature is silent :(

 Dog is silent :(

 Hund is silent :(

 Perro is silent :(

Passing an object of a subclass

The dynamic_cast operator

• Firstly, we’ve modified the MakeSound method

inside the top-level class – it’s virtual now.

• Secondly, we’ve made the class tree. We’ve

added two additional levels to the tree.

The dynamic_cast operator

• If the dynamic_cast operator is used in the

following way:

 dynamic_cast<pointer_type>(pointer_to_object)

• and the conversion of pointer_to_object to the

type of pointer_type is possible, then the result

of the conversion is a new pointer which is

fully usable.

• Otherwise, the result of the conversion is equal

to NULL.

The dynamic_cast operator

The dynamic_cast operator

The dynamic_cast operator

• This is what you should see on the screen:

 creature is silent :(

 Dog says: Woof!

 Hund says: Wuff!

 Hund runs (gs)!

 Perro says: Guau!

 Perro runs (mes)!

The dynamic_cast operator

• The PlayWithPet function doesn’t have a pointer

but a reference. In consequence, the following

two parts of the programs have been changed

too:

 the main function invokes the PlayWithPet in a slightly

different way (have a look)

 the form of dynamic_cast utilization is quite different

here; the operator takes the following form:

• dynamic_cast<reference_type>(reference_to_object)

• and returns a newly transformed (converted)

reference

The dynamic_cast operator

The dynamic_cast operator

• The program, compiled and run, produces the

following, disappointing output:
• creature is silent :(

• terminate called after throwing an instance of 'std::bad_cast'

• what(): std::bad_cast

• This application has requested the Runtime to terminate it in

an unusual way.

• Please contact the application's support team for more

information.

The dynamic_cast operator

• There’s something new here: the try-catch

statement. It looks like this:
 try {

 thing_we_want_to_try_although_we_are_not_quite_sure_if_it_is_reasonable;

 } catch(…) {}

The dynamic_cast operator

The dynamic_cast operator

The dynamic_cast operator

• The program produces this output:

 creature is silent :(

 Dog says: Woof!

 Hund says: Wuff!

 Hund runs (gs)!

 Perro says: Guau!

 Perro runs (mes)!

