
Maciej Sobieraj

Lecture 6

Outline

1. Inheritance

1. Defining class hierarchy

2. Classes, inheritance and type compatibility

3. Polymorphism and virtual methods

4. Objects as parameters and dynamic casting

5. Various supplements

6. The const keyword

More about copying constructors

• The copying constructor is a specific form of

constructor designed to make a more or less

literal copy of an object. You can recognize this

constructor by its distinguishable header.

• Assuming that a class is called A, its copying

constructor will be declared as:

 A(A &)

• The implicit constructor simply clones (bit by

bit) the source object

More about copying constructors

More about copying constructors

• The code will produce the following output:

 124

 123

 123

More about copying constructors

More about copying constructors

• The code we’ve created produces the following

output:

 124

 124

 124

More about copying constructors

More about copying constructors

• the code produces the following output:

 124

 123

 123

More about copying constructors

More about copying constructors

• The code will output the following lines to the

screen:

 124

 123

 123

More about copying constructors

• The mechanism of passing parameters by value

assumes that a function operates on the copy of

an actual parameter.

• This is clear when we consider parameters of

simple types (like int or float), but it becomes

more complex when the parameter is an object.

More about copying constructors

More about copying constructors

• The output of the program isn’t really complex –

it says:

 Hi from the copy constructor!

 I'm here!

More about copying constructors

• The program will cause at least two compilation

errors

More about default constructors

• the class will be implicitly equipped with the so-

called implicit default (parameter-less)

constructor but the constructor will do nothing

at all.

More about default constructors

More about default constructors

• The class has no constructor. In effect their

fields will not be initialized in any way. The

values outputted by the display method are

completely random. The number we’ve seen

won’t be repeated when you run the program on

your computer.

• One of our outputs is as follows:

 i=2147344384,f=1.54143e-044

 i=5641768,f=7.89812e-039

More about default constructors

• The default constructor has to be implicitly

invoked when a new object is created (twice in

our example). We get error (twice)

More about default constructors

• We’ve changed the header of the existing

constructor by adding default values to both

parameters.

More about default constructors

• The program produces the following output:

 i=0,f=0

 i=0,f=0

Compositions vs. constructors

Compositions vs. constructors

• The program produces the following output:

 A is doing something

 B is doing something

Compositions vs. constructors

Compositions vs. constructors

• We’ve compiled the code and run it. It’s

produced the following output:

 copying A...

 copying B...

 A is doing something

 B is doing something

•

Compositions vs. constructors

Compositions vs. constructors

• The program produces the following output:

 Copying Compo...

 A is doing something

 B is doing something

• The explicit copying constructor (written by us)

has invoked none of the component’s copying

constructors.

Compositions vs. constructors

• One way to do this is to add a line like this one:
 Compo(Compo &src) : f1(src.f1), f2(src.f2) { cout << "Copying Compo..." << endl; }

• instead of
 Compo(Compo &src) { cout << "Copying Compo..." << endl; }

• The solution is correct despite how it looks. The

modified program behaves the way we want,

producing the following output:

 copying A...

 copying B...

 Copying Compo...

 A is doing something

 B is doing something

Outline

1. Inheritance

1. Defining class hierarchy

2. Classes, inheritance and type compatibility

3. Polymorphism and virtual methods

4. Objects as parameters and dynamic casting

5. Various supplements

6. The const keyword

7. Friendship in the “C++” world

The const keyword

• size1 and size2 are variables of type int and

have a value of 100.

• Both entities behave like constants (more

precisely, as read-only variables).

• Note that the const keyword is located in

different places in each line. Both forms are

acceptable.

The const keyword

• The compiler will protect both variables from

being modified. The following two lines will

cause compilation errors:

 size1++;

 size2 = size1;

• You can use both symbols (names of const)

anywhere you can use a literal or an expression

consisting of literals, as in this example:

 const int size = 100;

 int buffer[size];

The const keyword

• Note that you mustn’t declare a const without

initialization (think about this for a moment and

you’ll find it obvious). The following line will

cause a compilation error:

 const int size;

Constant aggregates

• Aggregates (structures and arrays as well as

arrays of structures and structures of arrays et

cetera) may be declared as const too, although

the effects are somewhat different.

Constant aggregates

• points and data are read-only variables and

you mustn’t modify them. Both of the following

lines are wrong:

 --points[2];

 data.key = 0;

• Some of the “C++” compilers may consider the

following line as incorrect:

 int array[points[2] + data.key];

• as the compiler may not be able to determine

the number of the array’s elements during the

compile time.

Constant pointers

• Pointers are allowed to be declared as const as

well.

• Both iptr and cptr mustn’t be modified. This

means that the following lines will cause

compilation errors:

 --iptr;

 ++cptr;

Constant pointers

• The entities pointed to by the const pointers may

be modified with no restrictions. The following

two lines will be accepted and successfully

performed:

 *iptr = 0;

 *cptr = 'T';

Pointers to constants

• Constant pointers aren’t equivalents for

pointers to constants.

• The const keywords have changed their

locations and now they’re placed at the

beginning of the declarations. Note that the

following form is correct too:

 int const *iptr = arr + 2;

 char const *cptr = "Why?";

Pointers to constants

• Both iptr and cptr may be modified. The

following lines are correct:

 --iptr;

 ++cptr;

• In contrast, the entities pointed to by these

pointers cannot be modified any more. The

following two lines will not be accepted:

 *iptr = 0;

 *cptr = 'T';

Constant pointers to constants

• Both of the above variants can be mixed

together giving a const pointer to a const

value.

• None of the following lines are correct in the

scope of this declaration:

 --iptr;

 ++cptr;

 *iptr = 0;

 *cptr = 'T';

Constant function parameters

• Any of the function parameters passed by

value may be declared as const.

• Note that the effects of these declarations are

only observable inside the function and have no

impact on the outside world.

• Function returns n*n

Constant function parameters

• Any of the function parameters passed by

reference may be declared as const.

• We can say that this is a stronger form of the

previous declaration. We can understand it as

a solemn promise made by the function: I’m not

going to modify your actual parameter.

• The snippet is incorrect.

Constant function results

• Any function may declare its result as const.

• This line will be rejected by the compiler:

 char *p = fun();

• This one will be accepted:

 const char *str = fun();

Constant class variables

• Any class may declare its field as const.

• A const class field must be initialized inside

an initialization list within any of the class

constructors. Any other assignment will be

rejected.

Constant class variables

• All of the constructors initialize the const field

with a different value. All the initializations are

valid.

• The following snippets, inserted inside the public

part of the Class, will be recognized as invalid:

 Class(double f) { field = f; }

 void fun(int n) { field += n; }

Constant objects

• An object of any class may be declared as

const.

Constant objects

• Let’s assume that we have the following

declarations (all valid):

 Class o1(1);

 const Class o2(2);

 int i;

• The following three lines will be rejected:

 o2.field = 3;

 o2.set(1);

 i = o2.get();

• They’ll be considered valid if you replace ‘o2’

with ‘o1’.

Constant member functions

• Any of the class’s member functions may

declare themselves as const.

• The syntax of the declaration may be surprising

as the const keyword is placed after the

parameter list, like this:

 type name(parameters) const; in declarations

 type name(parameters) const { … } in definitions

Constant member functions

• In effect, the following line will be considered

valid:

 i = o2.get();

Outline

1. Inheritance

1. Defining class hierarchy

2. Classes, inheritance and type compatibility

3. Polymorphism and virtual methods

4. Objects as parameters and dynamic casting

5. Various supplements

6. The const keyword

7. Friendship in the “C++” world

Friend or foe?

• A friend of a class may be:

 a class (it’s called the friend class)

 a function (it’s called the friend function)

• A friend (class of function) can access those

components hidden from others. Friends are

allowed to access or to use private and

protected components of the class.

Friend or foe?

Friend or foe?

• Note that it doesn’t matter where you add the

friendship declaration, i.e. the line starting with

the phrase:

 friend class … ;

• may exist inside any of the class parts (public,

private or protected), but must be placed outside

any function or aggregate.

• This program outputs:

 It's a secret, that field = 100

The rules

• There are some additional rules that must be

taken into account:

 a class may be a friend of many classes

 a class may have many friends

 a friend’s friend isn’t my friend

 friendship isn’t inherited – the subclass has to define

its own friendships

The rules

The rules

 It's a secret, that field = 111

Friend functions

• A function may be a class’s friend too.

• The rules are a bit different from before:

 a friendship declaration must contain a complete

prototype of the friend function (including return

type); a function with the same name, but

incompatible in the sense of the parameters’

conformance, will not be recognized as a friend

 a class may have many friend functions

 a function may be a friend of many classes

 a class may recognize as friends both global and

member functions

Friend functions

Friend functions

• The example program writes:

 It's a secret, that field = 99

