
Maciej Sobieraj 

Lecture 7 



Outline 

1. Exceptions 

1. To err is human 

2. Throw statement in detail 

3. Categorizing exceptions 

 

 

 

 

 

 

 

 

 

  

 

 

 

 



How to get into trouble? 

• The code is aborted, as division by zero isn’t 

possible in a world of real numbers. 



How to get into trouble? 

• There is one exception – if there is no data in 

the input stream or the data is invalid, the cin 

stream returns a null reference, which 

evaluates to false in Boolean contexts. 



How to get into trouble? 



How to get into trouble? 

• The idea is simple: when the function 

discovers that there’s a problem with the 

arguments or with the intermediate results, it 

exits immediately, returning false as the 

result. 



How to get into trouble? 

• Try to imagine that our (safe) function is 

invoked many times by other functions. 

• Notice that the chain of invoking-invoked 

functions can be very long. If only the highest-

level functions are responsible for reacting to 

errors occurring on the lower levels, it may 

result in the code “swelling”.  

• The swell contains the code that does nothing 

but discover errors and try to handle them. 



How to get into trouble? 



How to get into trouble? 

• An exception is data.  

• Imagine an exception as a winged box, capable 

of flying, which comes up when something bad 

occurs, at the time when it happens.  

• The box contains data which may help to identify 

the reason for the failure.  

• The data may be of any type: it may be an int, a 

float, a string, an object of any class, you name 

it. 



How to get into trouble? 

• The part of the code that may cause 

problems needs to be marked (actually 

nested) within a special kind of block. The block 

is intended to be carefully watched during its 

execution. 

• When an exception arises, the execution of 

the block is terminated, but the program itself 

is still alive. 

• The exception is caught by another part of 

the code. 



How to get into trouble? 

• The top-most class, named exception, is a base for all 

exceptions. The class is only used to define some 

behaviours and properties common to all exceptions. 

• Two different classes are derived from the exception 

class.  

 The first, named logic_error, is intended to represent 

exceptions connected to program logic i.e. the 

algorithm, its implementation, data validity and 

cohesion.  

 The second class, named runtime_error, is used to 

identify exceptions thrown due to “unexpected” 

accidents like a lack of memory.  



How to get into trouble? 

• All these entities are defined within the header 

file exception. This means that the line 

 #include <exception> 

• may be needed in a code which makes use of 

any of these classes.  



Anatomy of an exception object 

• The exception class is very modest. In fact it 

defines only three components: 

 a constructor (not very useful to us because, as we’ve 

mentioned before, objects of this class aren’t created 

 a virtual destructor, originally empty 

 a virtual function called what which returns the C-style 

string (a pointer to the array of characters terminated 

by the null (‘\0’) character 

 



Where are exceptions thrown? 

• If you want to detect exceptions, you need to 

mark the part of the code in which the 

exceptions may occur.  

• You do this by using the “try” statement. 



Where are exceptions caught? 

• If you’re determined to catch any of the flying 

exceptions, you need to put the catch statement 

directly after the try statement. 



Where are exceptions caught? 

• If you write it this way: 

 catch(string &anyproblem) { … }  

• it’ll mean: I want to catch the exceptions which 

carry strings. 

• This form:  

 catch(exception &otherproblem) { … } 

• means: I’m going to catch the exceptions 

carrying objects of the exception class or of any 

other classes derived from the exception class. 



How are exceptions thrown? 

• If you want to throw an exception, you have to 

use the statement of the same name. The throw 

statement requires data that’ll be “packed” into 

an exception before its departure. 



How are exceptions thrown? 

• f you’re going to dispatch an int value, you’ll 

write something like this:  

 throw 997; 

• If you want to throw an exception equipped with 

an object of any class, you need to specify the 

constructor to be invoked to prepare the data, 

like this: 

 throw string("Bye world!"); 

 



How are exceptions thrown? 

• The function will provide a result if the 

arguments are valid, otherwise it’ll throw an 

exception containing a complaining string. 



How are exceptions thrown? 



How are exceptions thrown? 

• The program will be aborted with a message 

saying that an instance of an unhandled 

exception has been thrown.  



Outline 

1. Exceptions 

1. To err is human 

2. Throw statement in detail 

3. Categorizing exceptions 

 

 

 

 

 

 

 

 

 

  

 

 

 

 



Throw and catch coupled together 

  



Throw and catch coupled together 

• The example program outputs the following text 

to the screen: 

 Something bad happened: Bad arg d 

 



Throw and catch coupled together 

• The exception specification placed in the catch 

branch header, e.g. this one: 

 catch(string &exc) 

• works like a local (automatic) variable 

declaration. 

 



Throw and catch coupled together 

• Inside the following snippet: 
int main(void) { 

string str; 

 try { 

  throw string("1"); 

 } catch(string &str) { 

  cout << str; 

 } 

 return 0; 

} 

•  there are two different variables, named str 

(the former is hidden by the latter inside the 

catch block).  



Throw and catch separated 

• As you know, the throw and the catch may live 

separately as well. We can put throw in one 

function, catch in another, and the mechanism 

will still work effectively, but of course, only when 

the functions invoke themselves in the proper 

order. 

• This means that the exception object is able to 

fly above the function’s boundaries and can 

even skip over more than one function in order 

to find its own catch.  

 



Throw and catch separated 



Throw vs. function epilogue  

• The functions executions consist, in general, of 

three phases:  

 prologue (when all automatic variables/objects are 

created),  

 execution (when the function code is performed) and  

 epilogue (when the previously created entities are 

destructed). 



Throw vs. function epilogue  



Throw vs. function epilogue  

• The program will produce the following output:  

 Object constructed 

 Object says: hello 

 Object destructed 

 



Throw vs. function epilogue 

• We’ve added three throw instructions within the 

DoCalculations function. 

• The Class definition remains the same. 

• The main function will invoke DoCalculations 

three times and we’ll be able to observe the 

function’s behaviour. 

 



Throw vs. function epilogue 



Throw vs. function epilogue 

• The program outputs the following text: 
------- 

fatal 1 

------- 

Object constructed 

Object destructed 

fatal 2 

------- 

Object constructed 

Object says: hello 

Object destructed 

fatal 3 

 



Throw and the objects it throws 

• The throw statement is obligated to throw a 

value e.g. an object 

• throw is able to throw any object of any 

accessible class 



Throw and the objects it throws 



Throw and the objects it throws 

• Be aware that executing a line like this: 

 throw Class("exception 1"); 

• will cause the creation of a new object of class 

Class. 

• This means that the appropriate constructor 

will be invoked before the function ends its life. 

 



Throw and the objects it throws 

• This program produces the following output: 
------- 

Object [exception 1] constructed 

Caught! 

exception 1 

Object [exception 1] destructed 

------- 

Object [object] constructed 

Object [exception 2] constructed 

Object [object] destructed 

Caught! 

exception 2 

Object [exception 2] destructed 

------- 

Object [object] constructed 

Object [object] says: hello 

Object [exception 3] constructed 

Object [object] destructed 

Caught! 

exception 3 

Object [exception 3] destructed 

 



Throw and how we can find out 

about it 

• How can we find out if a function throws any 

exceptions or not? 

• There are two important arguments worth 

considering: 
 The function may be very long and very complex – reading it 

may be time consuming and you may overlook some of the 

throw statements 

 The source code of the function may be inaccessible – it may 

happen if you use a ready-made library, written by other authors, 

when you’ve compiled (binary) files containing only executable 

code and header files specifying function’s headers but not the 

bodies. 



Throw and how we can find out 

about it 



Throw and its specification 

• A function, which throws an exception, may 

(but doesn’t have to) specify the types of the 

entities being thrown. 

• It could be used even when the function’s 

body is inaccessible or hidden. 

• It enables the programmer to announce all 

exceptions that may leave the function, and 

therefore prepare other programmers for events 

that might happen during the function’s 

execution. 



Throw and its specification 

• There’s more than one form of specification – 

the simplest looks like this:  

 throw(x) 

• This means that the function throws one kind 

of exception, of type x, for example: 

 void function(void) throw(string); 

 



Throw and its specification 

• The more complex form looks like this: 

 throw(x1,x2,..,xn) 

• This means that the function throws n different 

exceptions of types x1, x2, …, xn respectively, 

for example: 

 int doit(int i) throw(int, string, Class); 

• This function may throw exceptions of type int, 

string and Class. 

 



Throw and its specification 

• The last form look like this: 

 throw() 

• and means “the function throws no 

exceptions at all”. 

 



Throw and its specification 



Throw and its specification 



Throw and its specification 

• The function specifies that it throws exceptions 

of type Class, although it actually throws 

string. 

• What’ll happen then? 

• Compilation? Goes OK – no problems, no 

errors, no warnings. 

• Execution? Houston, we have a problem – the 

program’s been interrupted and a message has 

appeared. It says that there was an uncaught 

exception of type ‘std::string’. 

 



Throw and its specification 

• Unfortunately, the correction hasn’t corrected 

our problem at all. 



Throw and its specification 



Throw and its specification 

• Are the results as expected? 

 

 

 

 

 

 

 

 Warning: function assumed not to throw an exception 

but does 



Throw and its specification 

• exception handling may be distributed 

among different parts of the program.  

• You can handle your exceptions in the most 

suitable places and don’t need to collect all 

catches in one function or module.  



Throw and its specification 



Unexpected exceptions handling 

• If any unexpected exception appears, a 

special runtime function is invoked.  

• This is the function that terminates the 

program and emits the diagnostic message 

we’ve read a few times already.  

• Its name is unexpected(). 



Unexpected exceptions handling 

• If you really need to do something during the last 

breaths of the program, you should: 

 code a parameter-less function of type void 

 invoke a function called set_unexpected, passing the 

name of your function to it 



Unexpected exceptions handling 



Outline 

1. Exceptions 

1. To err is human 

2. Throw statement in detail 

3. Categorizing exceptions 

 

 

 

 

 

 

 

 

 

  

 

 

 

 



The ‘explicit’ keyword 

• The explicit keyword may be placed in front of a 

class’s constructor declaration.  

• It protects the constructor from being used in 

any context requiring the use of implicit 

conversions. 



The ‘explicit’ keyword 



The ‘explicit’ keyword 

• Note that the following function would be wrong, 

too:  

 A fun(void) { return 0; }  

• while this one wouldn’t:  

 B fun(void) { return 0; } 

 



The ‘exception’ class 

• The exception class is a base (or a root) for all 

other predefined exceptions. 

• It contains a function called what, which is 

designed to provide a pointer to the so-called 

“C”-style string (a character sequence 

terminated with a null character) describing the 

nature of the exception. 



The ‘exception’ class 

 

 

 

 

 

 

 

 

 We will get “[Bad dynamic_cast!] 



The ‘logic_error’ class 

• exception ← logic_error 

• The logic_error class is directly derived from the 

exception class. 

• It’s designed to represent all the exceptions 

caused by a violation of the rules imposed by 

the logic of the algorithm/program. 

• It may (but doesn’t always) mean that 

exceptions of this kind are preventable, i.e. they 

won’t happen if all the processed data is valid. 



The ‘logic_error’ class 

• The constructor of the class allows us to “pack” 

a detailed message inside the exception object. 

• The following directive is mandatory in a code 

that makes use of these classes:  

 #include <stdexcept> 

 



The ‘domain_error’ class 

• exception ← logic_error ← domain_error 

• The domain_error class is derived from the 

logic_error class. It’s designed to represent all 

exceptions caused by the data exceeding the 

permissible range. 



The ‘invalid_argument’ class 

• exception ← logic_error ← invalid_argument 

• The invalid_argument class is derived from the 

logic_error class. It’s designed to represent all 

exceptions caused by passing improper 

arguments to methods or functions or 

constructors.  



The ‘length_error’ class 

• exception ← logic_error ← length_error 

• The length_error class is derived from the 

logic_error class. It’s designed to represent all 

exceptions caused by using illegal values to 

specify size/length of data aggregates.  



The ‘out_of_range’ class 

• exception ← logic_error ← out_of_range 

• The out_of_range class is derived from the 

logic_error class. It’s designed to represent 

exceptions connected to the use of illegal 

indexes/keys while accessing 

numbered/keyed data collections.  

 



The ‘runtime_error’ class 

• exception ← runtime_error 

• The runtime_error class is derived directly from 

the exception class. It’s designed to represent all 

exceptions caused by circumstances which 

may occur during the execution of the 

program. 

 



The ‘range_error’ class 

• exception ← runtime_error ← range_error 

• The range_error class is derived from the 

runtime_error class. It’s designed to represent 

exceptions caused by obtaining computation 

results exceeding the permissible range. 

 

 



The ‘overflow_error’ class 

• exception ← runtime_error ← overflow_error 

• The overflow_error class is derived from the 

runtime_error class. It’s designed to represent 

exceptions caused by obtaining results too 

large to represent any useful value (in the 

domain sense). 

 



The ‘underflow_error’ class 

• exception ← runtime_error ← underflow_error 

• The underflow_error class is derived from the 

runtime_error class. It’s designed to represent 

exceptions caused by obtaining results too 

small to represent any useful value (in the 

domain sense). 

 



What next? 

• if you want to create a specialized category of 

exceptions designed to distinguish a very 

specific class of underflow errors, you can do it 

in this way: 



bad_alloc 

• The bad_alloc exception may be thrown as an 

undesired effect of invoking the new or new[] 

operators when the runtime or operating system 

can’t fulfil our memory requirements. 



bad_exception 

• exception ← bad_exception 

• The bad_exception exception is thrown when a 

function tries to throw an exception not specified 

inside its throw specification.  

• Note that this exception cannot be caught 

directly.  

 



bad_exception 

 

 

 

 

 

 

 

 

 

 

 

 The program doesn’t output either “It's so bad...” or “Done”, 

or even “Got double” messages.  



bad_exception 

• Proper handling of the bad_exception exception 

requires the function to specify bad_exception 

on its throw list (it looks like a paradox but 

it’s true), and the unexpected handler 

function must be defined and set.  

• Failure to meet any of these conditions will result 

in undesired program behaviour. 



bad_exception 



bad_exception 

• The program will output the following lines to the 

screen: 

 Unexpected exception arrived! 

 It's so bad... 

 Done 

 


