
Maciej Sobieraj

Lecture 8

Outline

1. Exceptions

1. To err is human

2. Throw statement in detail

3. Categorizing exceptions

4. Catching exceptions

5. Exceptions in action

Different catches for different

purposes

• catch “catches” only these exceptions that are

compatible in type with the catch header.

 catch(string excp) { … }

• catches exceptions encapsulated inside objects

of type string, and ignores all others.

Different catches for different

purposes

• There’s a specialized form of the catch that’s

able to catch literally all passing exceptions – it

looks like:

 catch(…) { … }

• but in contrast to the previous form, it can

neither identify the exception object, nor

make any use of it

Different catches for different

purposes

Different catches for different

purposes

• The program produces the following output:

 Exception caught!

 Exception caught!

 Exception caught!

Different catches for different

purposes

• We’ve changed the catch header and added the

“exception ex” instead of the ellipsis.

• The branch is allowed to catch all exceptions

whose objects are compatible in type with the

exceptions class.

• We can identify an object, name it locally (as ex)

and make use of its properties and/or functions.

• We invoke the what function to find out what the

object wants to say about itself.

Different catches for different

purposes

Different catches for different

purposes

• The modified program → produces the following

output:

 Exception caught: 0

 Exception caught: 1

 Exception caught: 2

 Exception caught: Unknown exception

Different catches for different

purposes

• If we’re going to, or if we have to, provide

different ways of handling different exceptions,

we’re allowed to specify as many different

catch branches as we want

Different catches for different

purposes

Different catches for different

purposes

• The program outputs the following text:

 Out of range: 0

 Overflow: 1

 Domain: 2

 Exception: Unknown exception

Different catches for different

purposes

• There’s no need to choose between “all or

none”.

• We can selectively choose the exceptions we

want to catch and handle carefully, and those

that we want to handle very briefly.

• some of the exceptions are caught

individually while others go to the ellipsis

Different catches for different

purposes

Different catches for different

purposes

• The program outputs the following text:

 Out of range: 0

 Overflow: 1

 Domain: 2

 Exception: Unknown exception

 Something bad happened

Order of the catch branches

Order of the catch branches

• The program produces exactly the same output

as the previous one:

 Out of range: 0

 Overflow: 1

 Domain: 2

 Exception: Unknown exception

 Something bad happened

Order of the catch branches

Order of the catch branches

• The program produces this output, which

justifies the warnings:

 Exception: 0

 Exception: 1

 Exception: 2

 Exception: Unknown exception

 Something bad happened

Order of the catch branches

• When the exception arrives at a set of catch

branches, the first compatible branch is

chosen (and only this one) as a target handler.

• This means that when a more general

type/class is placed before the more specific

compatible type/class, the second branch

will receive no exceptions at all.

Order of the catch branches

Order of the catch branches

• The beginning of the output will look as follows:

 Exception: 0

 Exception: 1

 Exception: Unknown exception

 Exception: 2

• but immediately after this you’ll see some

alarming system messages and our program will

terminate abnormally.

• The exception carried by the string type

exception is, in a certain sense, orphaned:

there’s no catch branch wanting to receive it.

Order of the catch branches

Order of the catch branches

• Our repaired program produces the following

output:

 Exception: 0

 Exception: 1

 Exception: Unknown exception

 Exception: 2

 Something bad happened

Order of the catch branches

• Can you predict its output?
exception ← logic_error ← domain_error

exception ← runtime_error ← range_error

Order of the catch branches

• Your answer should look like this:

 Logic error: 0

 Logic error: 1

 Exception: Unknown exception

 Exception: 2

 Something bad happened

exception ← logic_error ← domain_error

exception ← runtime_error ← range_error

Order of the catch branches

• Can you predict its output?

exception ← logic_error ← domain_error

exception ← runtime_error ← range_error

Order of the catch branches

• The answer is:

 Logic error: 0

 Logic error: 1

 Exception: Unknown exception

 Runtime error: 2

 Something bad happened

exception ← logic_error ← domain_error

exception ← runtime_error ← range_error

Sharing the responsibility

Sharing the responsibility

• Now the handling process is dispersed over

two levels: lower (inside broker) and upper

(inside main).

• The output of the program is as follows:

 Broker - exception: 0

 Broker - exception: 1

 Broker - exception: Unknown exception

 Broker - exception: 2

 Something bad happened

Sharing the responsibility

• Can you predict its output?

Sharing the responsibility

• It’ll look like this:

 Broker - logic error: 0

 Broker - logic error: 1

 Exception: Unknown exception

 Runtime error: 2

 Something bad happened

Sharing the responsibility

• A badly constructed broker may ruin the

exception handling logic at higher levels.

• The broker’s decided to take control over all

arriving exceptions.

• None of them will leave the broker.

Sharing the responsibility

Sharing the responsibility

• The output of the program isn’t really varied –

this is how it looks:

 Broker swept problems under the carpet

 Broker swept problems under the carpet

 Broker swept problems under the carpet

 Broker swept problems under the carpet

 Broker swept problems under the carpet

Sharing the responsibility

• The responsibility of handling exceptions may

not only be divided – it may be shared, too.

• This means that the handling of the same

exceptions may be provided at more than

one level.

• Note that any of the catch branches might throw

an exception too, and the exception won’t be

handled in the place where it was created, but at

a higher level.

Sharing the responsibility

• Using the argument-less throw instruction

means:

 throw the same exception you just got

• there are no obstacles to using less anonymous

variants, like this one:

 catch(exception ex) {

 throw ex;

 }

Sharing the responsibility

• Note that you can throw another (new) exception

instead of throwing the received exception.

• This might be a good idea when you want to

change the category of the exception.

• Here’s an example:

 catch(logic_error err) {

 throw "We have a problem";

 }

Sharing the responsibility

Sharing the responsibility

• The example program produces the following

output:
 Broker swept problems under the carpet

 Logic error: 0

 Broker swept problems under the carpet

 Logic error: 1

 Broker swept problems under the carpet

 Exception: Unknown exception

 Broker swept problems under the carpet

 Runtime error: 2

 Broker swept problems under the carpet

 Something bad happened

Outline

1. Exceptions

1. To err is human

2. Throw statement in detail

3. Categorizing exceptions

4. Catching exceptions

5. Exceptions in action

Stack again

• We’ve introduced two important amendments

compared to its previous incarnations:

 the values stored in the stack are still located inside

an array, but the size of the array is defined

dynamically by the constructor; note the default

stack size specification

 as a consequence of the previous modification, we’ve

had to add a destructor responsible for removing

the array at the end of the stack’s life

Stack again

Stack again – new exceptions

• Let’s try to identify all the “bad” surprises our

stack may face in its life. We can see four of

them right here:

1. improper stack size specification (less or equal to

zero)

2. failure in allocating memory for the stack

3. invoking push when the stack is full

4. invoking pop when the stack is empty

Stack again – new exceptions

• We’ll define our own exceptions for all these

events. We think that:

 #1 will be described by a new exception derived from

the length_error class

 #2 will be described by a new exception derived from

bad_alloc class

 #3 and #4 will be described by a new exception

derived from logic_error

Stack again – new exceptions

Stack again – new exception

classes

Stack again – new exception

classes

Stack again – new stack

declaration

• We expect that:

 the constructor throws two exceptions:

stack_size_error and stack_bad_alloc

 the push function throws the stack_overflow

exception

 the pop function throws the stack_empty exception

Stack again – new stack

declaration

Stack again – new stack

declaration

• We’ve got two important things to do:

 check whether the initial stack size isn’t too low and

will throw an exception in such a case

 try to allocate memory for the stack and check if it

was successful; we’re going to re-throw our own

exception in such a case

Stack again – new constructor

Stack again – new push

• Modifying the push function should be easy. We

need to check if the SP hasn’t exceeded its

maximum allowable value (stacksize – 1) and

we’ll throw an event in such a case.

Stack again – new pop

Stack again – a header file for a

new module

• First, we’ll write the header file – a file

containing all the necessary declarations.

• We’ve named it mystack.h.

• We’ve assumed that the file with all required

definitions will be named mystack.cpp.

• The #ifndef directive is used by a pre-processor

to check if the compile-time symbol is defined

or not. In our example the checked symbol is

named __MYSTACK__

Stack again – a header file for a

new module

• If the symbol isn’t defined (ndef), the pre-

processor will analyse the rest of the file, or skip

it otherwise. Note that it doesn't skip the entire

file content, but only the part nested between the

#ifndef and #endif directives.

• The next directive, #define, defines the

__MYSTACK__ symbol

Stack again – a header file for a

new module

Stack again - implementation

Stack again – main function

• Note that we’ve included the #include directive referring

to the “mystack.h” header file. This is how the compiler

learns about the stack and all of its components, as well

as the exceptions we’ve jointly defined.

• The compilation process should look as follows.

 the compiler compiles the “mystack.cpp” file and produces an

object file (its name may be different on different platforms –

some compilers may use “mystack.o”, others “mystack.obj” –

don’t be surprised).

 The compiler compiles the “main.cpp” file and produces an

object file of a name, e.g. “main.obj”

 The linker links both files, adding a code taken from standard

libraries, and produces an executable file in the end.

Stack again – main function

Stack again – new, better main

function

Stack again – crash tests

Stack again – crash tests

• First, we’ll check if the constructor properly

detects stack size values that are too low.

• Ok, it works fine – we’ve got:

 Stacks of that size don't exist - sorry!

Stack again – crash tests

Stack again – crash tests

• Next, we’ll check if the constructor can handle

our exorbitant demands on the stack size

• Ours can - we see:

 No room for the stack - sorry!

Stack again – crash tests

Stack again – crash tests

• Is our stack too-many-pushes-proof?

• Yes, it is – it says:

 Stack is too small for that many pushes - sorry!

Stack again – crash tests

Stack again – crash tests

• And what about too many pops?

• That’s okay too:

 Stack is empty - sorry!

