
Maciej Sobieraj 

Lecture 9 



Outline 

1. Operators and enumerated types 

1. Overloading operators – the basics 

2. Enumerated types 

3. Overloaded operators in detail 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 



Operators – a glance at the past 

• An operator is a symbol designed to operate on 

data 

• The “C++” language has a wide range of 

different operators operating on many different 

types of data. 

• Some of the operators are more universal, some 

are more specific, some of them are written as 

single symbols, some are di-graphs or even 

tri-graphs, other are keywords.  



Operators – a glance at the past 

• One of the possible classifications is based on a 

number of arguments. We know that there are: 

 unary operators 

 binary operators 

 ternary operators 

• Another classification relies on the location of 

the operator. We distinguish: 

 prefix operators (placed in front of their argument) 

 postfix operators (placed after their argument) 

 infix operators (placed in between their arguments) 

 



Operators – a glance at the past 

• “C++” allows the programmer not only to overload 

functions (to assign a new implementation to the 

name of an already existing function) but also to 

overload operators. 

• Fortunately, the programmer isn’t allowed to change the 

existing operator's meaning (e.g. you can’t force “+” to 

subtract ints or floats) but you can define new domains 

for it (e.g. strings are a new domain for “+”). 

• “C++” doesn’t allow you to define completely new 

operators (e.g. you may not define an operator like this: 

“$#$”). You only can redefine any of the existing 

operators. 



What do we want to achieve? 

• We want the “<<” to be a synonym of the push 

method invocation and we want the “>>” to play 

the role of a pop member function.  



What do we want to achieve? 

• The “C++” language treats overloaded 

operators as very specific functions. The 

number of parameters of these functions must 

correspond to the number of operator 

arguments, but it isn’t as simple as you may 

expect (e.g. a function implementing a new role 

of a binary operator must not have two 

arguments). 



What do we want to achieve? 

• The name of such a specific function is also 

specific: it consists of a keyword “operator” glued 

to an operator symbol, e.g. a function 

implementing the “>>” operator will be named: 

 operator>> 

• An operator function may be implemented in two 

ways: 

 as a member function of a class – it’s implicitly 

assumed that an object of that class is one of the 

required operator’s arguments 

 as a “standalone” function – the function must 

explicitly specify the types of all its arguments 

 



Implementing the << operator 

• Definition of operator function for the “<<” 

operator (the new face of the push member 

function). 

• A new method of declaration into the header file 



Implementing the << operator 

• the operator must accept different forms of its 

arguments, like: 

 variable, e.g. 

• stack << VAR; 

 expression, e.g. 

• stack << 2 * VAR; 

 literal, e.g. 

• stack << 2; 

 etc 

• this means that the corresponding parameter 

of the operator function must be passed by 

value 

 



Implementing the << operator 

• the object of the class is the first of the 

operator’s arguments (the left one, to be 

precise) so we have nothing more to do except 

invoke the push method with a value from the 

second (right) operator’s argument. 

 



Implementing the << operator 



Implementing the >> operator 

• We’re not allowed (for obvious reasons) to 

store a value popped from the stack inside a 

literal or an expression. We have to put it into 

a variable (or to be more precise, into an l-

value).  

• We declare the function’s only argument as 

passed by reference. 



Implementing the >> operator 

 



Implementing the >> operator 



Improving the << operator 

• There are two different ways of using the “<<” 

operator: one implemented by us and one we 

got from the streams library. 

 cout << i << endl; 

• he line we quoted above is interpreted by the 

compiler in the following way: 

 (cout << i) << endl; 

• The expression inside the parentheses 

returns a reference to a stream (namely: the 

cout stream) so it can be used (reused) as a left 

argument for the next “<<” operator in a chain. 



Improving the << operator 

• the operator functions may not be void anymore 

 

 

• the function returns a reference to its 

maternal object 



Improving the << operator 



Improving the >> operator 

• We can improve the “>>” operator in the same 

way. 



Improving the >> operator 



The same effects in a different way 

• We’re allowed to write operator functions 

outside any class  



An indexing operator for the stack 

• We’ll redefine the meaning of the indexing 

operator. 

• We want the indexing to work in this odd way: 

 Stack[0] returns a reference to the element lying at 

the top of the stack 

 Stack[-1] returns a reference to the element lying 

below the top of the stack 

etc, etc. 

• An attempt to reach for a non-existent stack 

element will cause an exception to be thrown. 



An indexing operator for the stack 

 

 

• Note: 

 the function returns a value of type int& as the stack’s 

element type is int 

 the function has one argument – the index; we pass it 

by value as the array index doesn’t need to be a 

variable – it may be an expression too 

 



An indexing operator for the stack 



An indexing operator for the stack 



An indexing operator for the stack 

• The program produces the following output: 

 4 

 1 

 0 

 0 

 



Outline 

1. Operators and enumerated types 

1. Overloading operators – the basics 

2. Enumerated types 

3. Overloaded operators in detail 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 



Enumerated types – why do we 

need them? 

• The “C++” language pre-processor offers a 

method to create symbols which will be 

replaced by their values during compilation 

time. 

• These symbols behave like constants and you 

can’t change their value during run-time, so this 

might be the ideal way do represent weekdays 

in a way very clear to humans and very handy 

for computers. 



Enumerated types – why do we 

need them? 

• The #define directive has the following syntax: 

 #define    symbol       string 

 where: 

• the symbol is an arbitrary chosen name built like any 

variable’s or function’s name; the unofficial but respected 

convention says that the symbol should contain upper-case 

letters only, to be easily distinguished from regular variables 

(our symbols obey this convention) 

• the string is just a series of characters 

• the pre-processor will automatically replace each occurrence 

of the symbol with the string, but don’t forget that this process 

occurs during compilation time only and its effects are 

temporary – your source file remains untouched. 

 



Enumerated types – why do we 

need them? 

• Note that you mustn’t treat these symbols as a 

real constant. None of the symbols have any 

value – they’re always treated as strings. 

Consider that the following snippet will cause the 

x variable to be assigned the value of 0, not 2! 

 #define    ALPHA      2-1 

 #define    BETA        ALPHA*2 

 int x = BETA; 

 



Enumerated types – why do we 

need them? 

 



Enumerated types – why do we 

need them? 



Enumerated types – how do we 

use them? 

 

 

• Let’s explain what we’ve done: 

 the enum keyword begins the declaration of the type 

 ‘weekday’ is the name of the new type being created; the name 

of the type must obey the rules regarding names in general 

 next goes a list of all of the values creating the new type, 

separated by commas and enclosed in curly brackets 

 the compiler will implicitly assign the value of 0 to the first 

element of the list 

 any symbol except the first one will be assigned a value greater 

by one than the previous element in the list 

 



Enumerated types – how do we 

use them? 

• The enumerated type is treated in a very specific way. 

When a value of the type is assigned to any int value, 

everything is OK and the compiler accepts it without 

reservations. 

• In general, any enum type value is implicitly 

promoted to the int type when used in a context 

requiring integral values e.g. when used in conjunction 

with operators like +, -, etc. 

 

 



Enumerated types – how do we 

use them? 

• When the enumerated type plays the role of an l-

value, the situation changes. Assigning an int 

value to it will provoke a compilation warning as 

the compiler recognizes these assignments as a 

potential risk to data integrity. 

 



Enumerated types – how do we 

use them? 

• You may have to modify the assignment in the 

following way: 

 weekday day = static_cast<weekday>(0); 

• or use an alternative way of type-casting like 

this:  

 weekday f = (weekday)0;  

• Both ways are acceptable in this context. 

 



Enumerated types – how do we 

use them? 

• In general, enum type values are ints and may 

be used as arguments in any operations 

accepting ints. Internally they’re stored just like 

ints too. E.g., the following line 

 cout << SUNDAY << endl; 

 



Enumerated types – how do we 

use them? 

• Any of the elements of the enum type list may be 

followed by the ‘=’ sign and an expression 

resulting in an int value.  

• In this case, the symbol will be assigned the 

value specified by the expression (default rules 

are omitted here). 



Enumerated types – how do we 

use them? 

• More than one symbol of the enum type may 

have been assigned with the same value; in 

other words, some (or even all) symbols may 

represent identical values. 

• In the following example the A and C symbols 

represent the same value: 1.  



Enumerated types – how do we 

use them? 

• All symbols in the list must be unique, even if 

they’re assigned the same value. 

 

 

• In general, enum type symbols must be 

unique across a namespace, i.e. two different 

enum types can’t use identical symbols. 



Enumerated types – how do we 

use them? 

• You can avoid this conflict by putting one or both 

of the conflicting enum types inside a separate 

class/classes 



Enumerated types – how do we 

use them? 

• Using enum types may protect us from many 

threats, but some of them are still serious. 

 

 

 

 

• The + operator is unaware of weekdays at all 

and may skip from SATURDAY to literally 

nowhere, leaving the permitted type domain.  



Enumerated types – how do we 

use them? 



Enumerated types – how do we 

use them? 



Outline 

1. Operators and enumerated types 

1. Overloading operators – the basics 

2. Enumerated types 

3. Overloaded operators in detail 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 



Number of arguments 

• The number of arguments of the overloaded 

operator function is strictly restricted and it’s 

precisely defined by the context in which the 

function exists. 

• Two aspects are decisive: 

 the location in which the operator function is defined 

 the operator it overloads 

 



Number of arguments 



What you mustn’t do 

• Don’t forget that you’re not allowed to: 

 define new operators (those that are not known in 

the “C++” language) 

 change the priority of the redefined operators 

 overload operators working with standard data 

types 

 



Arithmetic operators 

 



Arithmetic operators 



Arithmetic operators 

• Note that the first function returns a vector, while 

the second returns a scalar. The first of the 

functions is a member function, and the second 

is global. 

• The program produces the following output to 

the screen: 

 (1, 1) 

 0 

 



Arithmetic operators 

• Note that the first of the newly defined operators 

may be chained, e.g. in the following way: 

 v3 = v1 + v2 + v3; 

• while the second one may not be treated in the 

same way – why? Can you explain it? 

 



Bitwise operators 



Bitwise operators 



Bitwise operators 

• Now the V class is able to bitwise right shift each 

of its elements and to evaluate their product (it’s 

a rather unusual use of the ~ operator).  

• The program produces the following output: 

 (7, 3) 

 21 

 



Assignment operator 



Assignment operator 



Assignment operator 

• The program produces the following output: 

 (8, 4) 

• Try to guess the output of the program when the 

main function takes the following form: 

 int main(void) { 

 V v1(4, 8), v2, v3; 

 v2 = v3 = v1; 

 cout << "(" << v2.vec[0] << ", " << v2.vec[1] << ")" << 

endl; 

 return 0; 

 } 

 



Relational operators 



Relational operators 



Relational operators 

• The program emits the following text:  

 false 

 true 

 



Logical operators 



Logical operators 



Logical operators 

• The program will emit the following two lines: 

 true 

 true 

 



Compound assignment operators 



Compound assignment operators 



Compound assignment operators 

• The program outputs: 

 (8, 12) 

 



Prefix increment and decrement 

operators 



Prefix increment and decrement 

operators 



Prefix increment and decrement 

operators 

• The example program shows you an overloaded 

prefix ++ which affects all vector elements. The 

program outputs: 

 (2, 3) 

 



Postfix increment and decrement 

operators 



Postfix increment and decrement 

operators 



Postfix increment and decrement 

operators 

• The postfix form of the ++/-- has to be 

implemented as a one-parameter operator 

function (sic! note that the parameter of type int 

is a complete dummy and you mustn’t use it 

within the function) and since it serves the object 

before it’s affected by the modification, it should 

return a copy of the unmodified object. 

• The presence of the dummy int parameter is the 

only trait that allows the compiler to 

distinguish between prefix and postfix 

overloaded operators.  

 



Postfix increment and decrement 

operators 

• The example program here → outputs the 

following text: 

 (3, 4) 

 


