
Maciej Sobieraj

Lecture 11

Outline

1. STL sequential containers

1. Sequence containers

2. Iterators

3. Operations

deque class

• Header:

 <deque>

• Definition:

 template<

 class T,

 class Allocator = std::allocator<T>

 > class deque;

• The name deque stands for double-ended

queue.

deque class

deque constructors – size

constructors

• deque has four constructors, virtually identical to

those of the vector:

 explicit deque (const Allocator& = Allocator());

 explicit deque

(size_type n, const T& value= T(), const Allocator& =

Allocator());

 template <class InputIterator>

 deque (InputIterator first, InputIterator last, const

Allocator& = Allocator());

 deque (const deque<T,Allocator>& x);

deque constructors – size

constructors

deque – iterator constructors

deque – iterator constructors

deque – copy constructors

list

• Header:

 <list>

• Definition:

 template<

 class T,

 class Allocator = std::allocator<T> >

 class list;

list

• The list container is an implementation of the

double-linked list principle.

• Each element has pointers leading to the next

and the previous ones in a list sequence.

• The list container allows for fast insertion and

deletion anywhere inside the range of its

elements.

Outline

1. STL sequential containers

1. Sequence containers

2. Iterators

3. Operations

Iterators

• The iterator is in many ways similar to the

concept of the pointer, and in some cases, they

can be used interchangeably.

Containers and iterators

• Every container is made up of four members

(types) related to iterators:

 iterator – read/write iterator type;

 const_iterator – read-only iterator type;

 reverse_iterator – reverse iterator type (iterates from

the end to the beginning)

 const_reverse_iterator – as above, but read only.

Containers and iterators

Initialization of iterators

• There are four methods that can do that:

 begin()

 end()

 rbegin()

 rend()

Initialization of iterators

• Each method comes in two variations – normal

and const:

 iterator begin ();

const_iterator begin () const;

 iterator end ();

const_iterator end () const;

 reverse_iterator rbegin();

const_reverse_iterator rbegin() const;

 reverse_iterator rend();

const_reverse_iterator rend() const;

Initialization of iterators

• For vector and deque, these methods return

random access iterators, but the list only

supports a bidirectional iterator.

 the begin() method returns the iterator that points to

the first element of the collection;

 the end() method returns the iterator that refers to the

past-the-end-element. If a container has n elements,

this value will be marked n+1 (non-existent).

 the rbegin() method means reverse begin – it returns

the iterator that points to the last element of the

collection;

Initialization of iterators

• For vector and deque, these methods return

random access iterators, but the list only

supports a bidirectional iterator.

 the rend() method means reverse end – it returns the

iterator that refers to the element before the first

element of the container – this value indicates the end

of the collection in reverse order.

• Past-the-end element

 The past-the-end element is a virtual element located

after the last element of the collection. It indicates the

end of the collection.

Iterators usage examples – normal

iterators

Iterators usage examples – reverse

iterators

Iterators usage examples – const

iterators

Iterators usage examples

• The compiler doesn’t allow anything to be

assigned to an element referred to by a constant

iterator.

Outline

1. STL sequential containers

1. Sequence containers

2. Iterators

3. Operations

size() and max_size()

• Name:

 size

• Signature:

 size_type size() const;

• Parameters:

 None.

• Return value:

 The number of elements which are currently stored inside a

collection.

• Description:

 This method returns the number of elements which are currently

stored inside a container. The size will change each time an

element is added to or removed from the container.

size() and max_size()

• Name:

 max_size

• Signature:

 size_type max_size () const;

• Parameters:

 None.

• Return value:

 The maximum number of elements which can be held inside a

container.

• Description:

 The method returns the maximum physical capacity of a

container. This value might depend on the STL library

implementation or an operating system, and will always be

constant in the same environment.

size() and max_size()

size() and max_size()

empty() and resize()

• Name:

 empty

• Signature:

 bool empty () const;

• Parameters:

 None.

• Return value:

 The method returns true if a container is empty and false otherwise.

• Description:

 This method is used to indicate whether a container is empty or not. You

should use this method instead of calling size() to check if the list

container is empty. Using calling size() for a list might result in linear

time performance for some STL implementations, instead of constant

ones.

empty() and resize()

• Name:

 resize

• Signature:

 void resize (size_type sz, T c = T());

• Parameters:

 sz – the new size of a container;

 c – the value to copy in order to add new elements into a container when the new

size (sz) is greater than the old size.

• Return value:

 None.

• Description:

 This method changes the current size of a container, either by causing it to grow

or shrink. The new size is provided by the parameter sz.

 If the new size is greater than the old size, new elements are added to the

container. Those new elements are created by copying parameter c, or, if c is not

provided, by copying the default value for a particular type of element.

empty() and resize()

empty() and resize()

vector::capacity() – vector only

• Name:

 vector<T>::capacity

• Signature:

 size_type capacity () const;

• Parameters: None.

• Return value:

 The total amount of space for elements currently allocated to a

particular vector.

• Description:

 This method is present in the vector class only. capacity is the total

number of slots inside a vector which are currently allocated. capacity is

always greater than or equal to size.

vector::capacity() – vector only

vector::capacity() – vector only

vector::reserve() – vector only

• Name:

 vector<T>::reserve

• Signature:

 void reserve (size_type n);

• Parameters:

 n – the minimum value of capacity to be requested.

• Return value:

 None.

• Description:

 This method allocates additional space for elements inside a

vector. If the newly requested capacity n is greater than the

current capacity, reallocation is enforced.

vector::reserve() – vector only

vector::reserve() – vector only

back() and front()

• Name:

 front

• Signature:

 reference front ();

const_reference front () const;

• Parameters:

 None.

• Return value:

 A reference to the first element in a container.

• Description:

 This method returns a reference to the first element in a

container. The reference might be normal or constant – it all

depends on the calling context.

back() and front()

back() and front()

back() and front()

• Name:

 back

• Signature:

 reference back ();

const_reference back () const;

• Parameters:

 None.

• Return value:

 A reference to the last element in a container.

• Description:

 This method returns a reference to the last element in a

container. The reference might be normal or constant – it all

depends on the calling context.

back() and front()

back() and front()

operator[] and at() – vector and

deque only

• Name:

 operator[] (vector and deque only)

• Signature:

 reference operator[] (size_type n);

const_reference operator[] (size_type n) const

• Parameters:

 n – the index of the element to access.

• Return value:

 A reference to the element of index n.

• Description:

 Operator [] allows containers (vector and deque in this case) to

be treated in a similar way to arrays.

operator[] and at() – vector and

deque only

operator[] and at() – vector and

deque only
• Name:

 at (vector and deque only)

• Signature:

 reference at (size_type n);

const_reference at (size_type n) const

• Parameters:

 n – the index of the element to be accessed.

• Return value:

 A reference to the element of index n.

• Description:

 The method at() is used to retrieve an element from the STL container

(vector and deque). It retrieves the value stored under the index n. at()

is very similar in its behavior to operator[]. The only difference is that at()

performs a range check on parameter n, and if n is out of range, an

out_of_range exception is thrown.

operator[] and at() – vector and

deque only

assign()

• Name:

 assign

• Signature:

 template <class InputIterator>

 void assign (InputIterator first, InputIterator last);

void assign (size_type n, const T& u);

• Parameters:

 first, last – the input iterators which provide a collection of input elements. The

assign method will copy all the elements from this range, including first and

excluding last. Because first and last are of the InputIterator type, virtually any

type of iterator can be used in the call;

 n – the number of times the value u will be copied to fill the container;

 u – the value to be copied.

• Return value:

 None.

• Description:

 This method assigns new values to an already existing container. The whole old

content of the container is dropped and deleted.

assign()

insert()

• Name:

 insert

• Signature:

 iterator insert (iterator position, const T& x);

void insert (iterator position, size_type n, const T& x);

template <class InputIterator>

 void insert (iterator position, InputIterator first, InputIterator last);

• Parameters:

 position – the position in the container at which the insertion of an element (or

elements) is to be performed. For deque and vector, this is

RandomAccessIterator, while in the case of a list, BidirectionalIterator is used;

 x – the value to be inserted;

 n – the number of x values to be inserted;

 first, last – the iterators specifying the range of elements to be inserted into the

container. As usual, the range includes first and excludes last.

• Return value:

 The first version of this method returns an iterator to a newly inserted object if the

insertion is successful. Other versions do not return anything.

insert()

• Description:
 The method insert() performs an insertion into a container. There

are three variants of this method, as stated in the signature

section. Inserting an element into a container will cause the

container to grow. This leads to different consequences,

depending on the type of collection:

 vector – when an increase in size causes it to reallocate (not

enough capacity left) all iterators, references and pointers will be

invalidated;

 deque – all iterators will be invalidated, references also, unless

insertion at the beginning or end takes place;

 list – the iterators and references remain.

insert()

insert()

insert()

erase()

• Name:

 erase

• Signature:

 iterator erase (iterator position);

iterator erase (iterator first, iterator last);

• Parameters:

 position – the iterator pointing to the element to be erased;

 first, last – the iterators which specify the range of elements to be

erased. As usual, the range includes first and excludes last.

• Return value:

 An iterator to the first element after the last removed element, or end if

the operation removes the last element in the collection.

• Description:

 This function removes an element or a range of elements from a

collection.

erase()

swap()

• Name:

 swap

• Signature:

 void vector::swap (vector<T,Allocator>& vec);

void deque::swap (deque<T,Allocator>& dqe);

void list::swap (list<T,Allocator>& lst);

• Parameters:

 vec, deq, lst – another collection of the same type as this one.

• Return value:

 None.

• Description:

 This method swaps the entire content between two collections of the

same type (list <–> list, vector <–> vector, deque <–> deque).

swap()

clear()

• Name:

 clear

• Signature:

 void clear ();

• Parameters:

 None.

• Return value:

 None.

• Description:

 This function removes all the elements from the collection and

sets its size to 0. During the removal, the destructors are called.

clear()

push_back() and pop_back()

• Name:

 push_back

• Signature:

 void push_back (const T& x);

• Parameters:

 x – the value which will be used to create a new element (by copying)

inside a container.

• Return value: None.

• Description:

 The function push_back() adds a new value to a container. The value is

added at the end (the back) of the container, and increases the size of

the container by one. Different types of containers react differently:

 if a vector has enough capacity, the item is just added to it, no

reallocation is performed, and all obtained iterators remain valid;

 if there is not enough capacity left, a reallocation is performed, which

invalidates all iterators;

push_back() and pop_back()

• Name:

 pop_back

• Signature:

 void pop_back ();

• Parameters:

 None.

• Return value:

 None.

• Description:

 This function removes an element from the tail of the container. Basically, it is the

opposite method to push_back().

push_back() and pop_back()

push_front() and pop_front()

• Name:

 push_front(deque and list only)

• Signature:

 void push_front (const T& x);

• Parameters:

 x – the value which will be used to create a new element (by

copying) inside a container.

• Return value:

 None.

• Description:

 The function push_front() adds a new value to a container. The

value is added at the beginning (the front) of the container, and

increases the size of the container by one.

push_front() and pop_front()

• Name:

 pop_front

• Signature:

 void pop_front ();

• Parameters:

 None.

• Return value:

 None.

• Description:

 This function removes an element from the beginning of the

container. Basically, it’s the opposite method to push_front().

During element removal, its destructor is called, and the

container size is reduced by one.

push_front() and pop_front()

splice() – list only

• Name:

 splice (list)

• Signature:

 void splice (iterator position, list<T,Allocator>& x);

void splice (iterator position, list<T,Allocator>& x, iterator i);

void splice (iterator position, list<T,Allocator>& x, iterator first, iterator

last);

• Parameters:

 position – the position in the calling list where the elements will be

inserted;

 x – the list from which the elements will be moved to the calling list;

 i – the iterator to a single element from the source list, which will be

moved to the calling list;

 first, last – the iterators which define the range of elements to be moved

from the source list to the destination. The range includes first and

excludes last.

splice() – list only

• Return value:

 None.

• Description:

 This method moves elements from a list specified as parameter x, and inserts

them into the list container which calls the method. The target list size increases

by the number of elements moved, while the source list size decreases

accordingly. There are three versions of this method:
• a method which moves the whole content of the source container;

• a method which moves one, and only one, element specified by the iterator;

• a method which moves a range of elements specified by the iterators.

splice() – list only

remove() and remove_if() – list only

• Name:

 remove (list)

• Signature:

 void remove (const T& value);

• Parameters:

 value – the value of the element to be removed from the list. It’s

the same type as that used during the list declaration.

• Return value:

 None.

• Description:

 This function removes from the list all the elements equal to the

values provided as the parameters. During the removal, the

destructors are called.

remove() and remove_if() – list only

• Name:

 remove_if (list)

• Signature:

 template <class Predicate>

 void remove_if (Predicate pred);

• Parameters:

 pred – a unary predicate (one argument function, or function object)

which takes an argument of the same type as the elements of the list.

The predicate should return true for elements which are to be removed,

and false for all others.

• Return value:

 None.

• Description:

 The function remove_if() performs a conditional object deletion. The

method calls the provided predicate for every element stored inside the

list. If the predicate returns true, the element is eligible for removal.

remove() and remove_if() – list only

remove() and remove_if() – list only

sort() – list only

• Name:

 sort (list)

• Signature:

 void sort ();

template <class Compare>

 void sort (Compare comp);

• Parameters:

 comp – the binary predicate used to compare pairs of elements in order

to ensure a proper sort order. It takes arguments of the same type as

the elements of the list.

• Return value:

 None.

• Description:

 This method performs the sorting of elements in a lexicographic order –

from lowest to highest.

sort() – list only

