Maciej Sobieraj

Lecture 12

I | Outline

1. Linked Lists

Preliminaries

* Options for implementing an ADT List

= Array has a fixed size
« Data must be shifted during insertions and deletions {:

= Linked list is able to grow Iin size as needed o
» Does not require the shifting of items during insertions and

deletions {:}

Preliminaries

(a)
20 —1>»| 45 —t>»| 51 —t>| 76 —I>»| 34

—— -
-

~” Oldvalue <4

20 —1»| 45 —1>» 51 76 —1>» 84

60

Inserted item

N

(0 Z
20 4> 45 —1>»| 57 —1>» 60 —1i>»| 76 —1>» 84

Deleted item

a) A linked list of integers; b) insertion; c) deletion

Pointers

« A pointer contains the location, or address In
memory, of a memory cell
= |nitially undefined, but not NULL
= A statically allocated pointer declaration {:
int *p;
= A dynamically allocated pointer variable
P = new int;

o

Pointers

* The expression, *p, denotes the memory cell to
which p points

 The & address-of operator places the address of
a variable into a pointer variable

Look in location 342 for what you want

Memory cells l

26 10 5 9

Pointer p Addresses—» 340 341 342 343

A pointer to an integer

Pointers

 The delete operator returns dynamically

allocated memory to the system for reuse, and
leaves the variable undefined

= delete p;

= A pointer to a deallocated memory cell is possible and
dangerous

« Assign the pointer g the value in p
9 = Pbr

(a) int *p, *qg;

int X;
(b) p = &x;
© *p = 6;

(d) p = new int;

() g = new int;
*q = 8;

(h) p = NULL;

(i) delete q;
q = NULL;

1 [

P g X
P X Or *p
[F—{s]

P X Or *p

G [5]
P *p x
[s]
P *p X
K

q

[s]
P *p X
q *q

A [s]
P X
q *q

A [s]
P X
A

q

(@)
(b)
()
(d)
(e)

Pointers

declaring pointer variables;

pointing to statically allocating memory;
assigning a value;

allocating memory dynamically;

assigning a value

Pointers

) a = p; M gy N
p *p Or *q
(f) copying a pointer;
q (g9) allocating memory dynamically
and assigning a value;
() g = new int; . : / 6
*q = 8; P *P % (h) assigning NULL to a pointer variable;
“T—> 38 (i) deallocating memory
q *q
(h) p = NULL; 7 6
P X
q *q
(i) delete q; Z / 6
q = NULL; P X
q

Dynamic Allocation of Arrays

« Use the new operator to allocate an array
dynamically

* An array name is a pointer to the array’s first
element

* The size of a dynamically allocated array can be
Increased
double* oldArray = anArray;
anArray = new double|[2*arraySize];

Pointer-Based Linked Lists

 Anode in alinked list Is usually a struct
struct Node
{ 1nt i1tem
Node *next;

A node

}; //end struct item next
* A node is dynamically allocated
Node *p;

p = new Node;

I | Pointer-Based Linked Lists

« The head pointer points to the first node in a
linked list

 If head is NULL, the linked list is empty

« EXxecuting the statement head=new Node
before head=NULL will result in a lost cell

Pointer-Based Linked Lists

—r=

head

5

.—

item next

A head pointer to a list

head

A lost cell

— P

8

*e——P e o 0 0

?

*head

head = new node;

item next

NULL

100 \/

?

head
head = NULL;

item next

Displaying the Contents of a Linked

List
« Reference a node member with the -> operator
p->1tem;
* Atraverse operation visits each node in the
linked list
= A pointer variable cur keeps track of the current node
for (Node *cur = head;
cur != NULL; cur = cur->next)

cout << cur->item << endl;

Displaying the Contents of a Linked
List

Before After

—» 5 —1—» 10 o—f—= —»| 5 —1—» 10 —t—

*—1—»
*—1—P

cur cur

The effect of the assignment cur = cur->next

I | Deleting a Specified Node from a
Linked List

« Deleting an interior node
prev->next=cur->next;

« Deleting the first node
head=head->next;

* Return deleted node to system
cur—->next = NULL;
delete cur;
cur=NULL;

Deleting a Specified Node from a
Linked List

——» § /—--—> 8 —1—>» 10 ——» e —p 100
head T next T
prev cur

Deleting a node from a linked list

é--—-b 5 —1—>»| 10 —1—Pp e —p| 100
head T
prev cur

Deleting the first node

I | Inserting a Node into a Specified
Position of a Linked List

« To Insert a node between two nodes

newPtr—->next = cur;
prev->next = newPtr;

—» 20 K— —————————— »| 40 —f—» s+ —>» 100
l 30 l

prev ur
T Inserting a new node into a linked list

newPtr

I | Inserting a Node into a Specified
Position of a Linked List

* To Insert a node at the beginning of a linked list

newPtr—->next = head;
head = newPtr;
head| +————""—""——— > 3 o » 6 —~ P eseoee —»| 100
A
I

Inserting at the beginning of a linked list

newPtr

I | Inserting a Node into a Specified
Position of a Linked List

* Inserting at the end of a linked list is not a
special case if cur IS NULL

newPtr->next = cur;
prev->next = newPtr;
Formerly null
|
se —»| 96 ® »| 100 /i/——b 102

Inserting at the end of a linked list

I | Inserting a Node into a Specified
Position of a Linked List

« Determining the point of insertion or deletion for
a sorted linked list of objects
for (prev = NULL, cur= head;
(cur !'= null) &&
(newValue > cur->item);

prev = Ccur, Cur = cur->next;

I |A Pointer-Based Implementation of

the ADT List
e Public methods Members
" 1sEmpty " head
" getLength " Size
" insert * Local variables to
" remove member functions
" retrieve " Ccur
* Private method " prev
= find

* Private Data

I | Constructors and Destructors

 Default constructor initializes size and head

* Copy constructor allows a deep copy
= Copies the array of list items and the number of items

« A destructor is required for dynamically allocated
memory

I | Comparing Array-Based and
Pointer-Based Implementations

« Size
= |ncreasing the size of a resizable array can waste
storage and time {:

- Storage requirements

* Array-based implementations require less memory
than a pointer-based ones

o

»

I | Comparing Array-Based and
Pointer-Based Implementations

* Access time
= Array-based: constant access time

= Pointer-based: the time to access the it" node {:
depends on | o

* Insertion and deletions
= Array-based: require shifting of data
= Pointer-based: require a list traversal

I Saving and Restoring a Linked List
by Using a File

« Use an external file to preserve the list between
runs

* Do not write pointers to a file, only data
* Recreate the list from the file by placing each

item at the end of the list

= Use a tail pointer to facilitate adding nodes to the end
of the list

= Treat the first insertion as a special case by setting
the tail to head

Passing a Linked List to a Function

A function with access to a linked list's head
pointer has access to the entire list

« Pass the head pointer to a function as a
reference argument

"Actual argument"
head

ha

™~

2 o— T 4 *—F—p 6 *——p» e s 00 —» 86
/

./'

headPtr
"Formal argument”

A head pointer as a value argument

Processing Linked Lists
Recursively

« Recursive strategy to display a list
= Write the first node of the list
= Write the list minus its first node i::

* Recursive strategies to display a list backward ©

* writelListBackward Strategy

» Write the last node of the list
» Write the list minus its last node backward

Processing Linked Lists
Recursively

" writelListBackward? strategy

* Write the list minus its first node backward
* Write the first node of the list {:

* Recursive view of a sorted linked list o
= The linked list to which head points is a sorted list if
* head IS NULL or {:}1
* head->next IS NULL oOr

e head->item < head->next->item, and
head->next points to a sorted linked list

Objects as Linked List Data

« Data in a linked list node can be an instance of a
class

typedef ClassName ItemType;
struct Node
{ ITtemType 1tem;
Node *next;
}; //end struct
Node *head;

Circular Linked Lists

* Last node references the first node
* Every node has a successor
* No node in a circular linked list contains NULL

—» 2 —1—» 4 ——» 6 —1—» 8 T

L)

A circular linked list

list

Dummy Head Nodes

 Dummy head node

= Always present, even when the linked list is empty

= |nsertion and deletion algorithms initialize prev to
reference the dummy head node, rather than NULL

| *—1 1 o— T 5 o1 e o 00 —P 44

head Dummy head node

A dummy head node

I | Doubly Linked Lists

- Each node points to both its predecessor and its
successor

+ Circular doubly linked list

" precede pointer of the dummy head node points to ©

head node

the last node
* next reference of the last node points to the dumm{i}
= No special cases for insertions and deletions © O

| Doubly Linked Lists

(@) listHead

Pk

T ‘11| Able [+

-

—1

\y
Ay
Ay

Smith |« e« «|® Wilson] e« « »

.‘\“

Baker |« <« |*® Jones |« s+« |*

LDummy head node J

(b) listHead

[
-

(a) A circular doubly linked list with a dummy head node

(b) An empty list with a dummy head node

Doubly Linked Lists

* To delete the node to which cur points

(cur—->precede) —>next = cur->next;
(cur—->next) —>precede = cur->precede; {ij
* To Insert a new node pointed to by newPtr o

before the node pointed to by cur

newPtr—->next = cur;
newPtr->precede = cur—->precede;
cur—->precede = newPtr;
newPtr—->precede->next = newPtr;

I | Application: Maintaining an
Inventory

* Operations on the inventory
= List the inventory in alphabetical order by title (L

command) ,{:
= Find the inventory item associated with title (I, M, D, o
O, and S commands)

= Replace the inventory item associated with a title (
D, R, and S commands)

= |nsert new inventory items (A and D commands)

I | The C++ Standard Template
Library

 The STL contains class templates for some
common ADTSs, including the 1ist class

 The STL provides support for predefined ADTs
through three basic items
= Containers are objects that hold other objects
= Algorithms act on containers

= |terators provide a way to cycle through the contents
of a container

I | Summary

 The C++ new and delete operators enable
memory to be dynamically allocated and
recycled

- Each pointer in a linked list is a pointer to the
next node in the list

« Array-based lists use an implicit ordering
scheme; pointer-based lists use an explicit
ordering scheme

Summary

 Algorithms for insertions and deletions in a
linked list involve traversing the list and
performing pointer changes

= |nserting a node at the beginning of a list and deleting
the first node of a list are special cases
A class that allocates memory dynamically

needs an explicit copy constructor and
destructor

I | Summary

* Recursion can be used to perform operations on
a linked list

 |n a circular linked list, the last node points to the
first node

 Dummy head nodes eliminate the special cases
for insertion into and deletion from the beginning
of a linked list

