
Maciej Sobieraj

Lecture 12

Outline

1. Linked Lists

Preliminaries

• Options for implementing an ADT List

 Array has a fixed size

• Data must be shifted during insertions and deletions

 Linked list is able to grow in size as needed

• Does not require the shifting of items during insertions and

deletions

Preliminaries

a) A linked list of integers; b) insertion; c) deletion

Pointers

• A pointer contains the location, or address in
memory, of a memory cell
 Initially undefined, but not NULL

 A statically allocated pointer declaration
int *p;

 A dynamically allocated pointer variable
p = new int;

Pointers

• The expression, *p, denotes the memory cell to
which p points

• The & address-of operator places the address of
a variable into a pointer variable

A pointer to an integer

Pointers

• The delete operator returns dynamically
allocated memory to the system for reuse, and
leaves the variable undefined
 delete p;

 A pointer to a deallocated memory cell is possible and
dangerous

• Assign the pointer q the value in p

q = p;

4-7

Pointers

4-8

(a) declaring pointer variables;

(b) pointing to statically allocating memory;

(c) assigning a value;

(d) allocating memory dynamically;

(e) assigning a value

Pointers

4-9

(f) copying a pointer;

(g) allocating memory dynamically

and assigning a value;

(h) assigning NULL to a pointer variable;

(i) deallocating memory

Dynamic Allocation of Arrays

• Use the new operator to allocate an array
dynamically

• An array name is a pointer to the array’s first
element

• The size of a dynamically allocated array can be
increased
double* oldArray = anArray;

anArray = new double[2*arraySize];

4-10

Pointer-Based Linked Lists

• A node in a linked list is usually a struct
struct Node

{ int item

 Node *next;

}; //end struct

• A node is dynamically allocated
Node *p;

p = new Node;

A node

Pointer-Based Linked Lists

• The head pointer points to the first node in a

linked list

• If head is NULL, the linked list is empty

• Executing the statement head=new Node

before head=NULL will result in a lost cell

4-12

Pointer-Based Linked Lists

A head pointer to a list

A lost cell

Displaying the Contents of a Linked

List
• Reference a node member with the -> operator

 p->item;

• A traverse operation visits each node in the
linked list
 A pointer variable cur keeps track of the current node

 for (Node *cur = head;
 cur != NULL; cur = cur->next)

 cout << cur->item << endl;

Displaying the Contents of a Linked

List

The effect of the assignment cur = cur->next

Deleting a Specified Node from a

Linked List

• Deleting an interior node
 prev->next=cur->next;

• Deleting the first node
 head=head->next;

• Return deleted node to system

cur->next = NULL;

delete cur;

cur=NULL;

Deleting a Specified Node from a

Linked List

Deleting a node from a linked list

Deleting the first node

Inserting a Node into a Specified

Position of a Linked List

• To insert a node between two nodes

newPtr->next = cur;

prev->next = newPtr;

Inserting a new node into a linked list

Inserting a Node into a Specified

Position of a Linked List

• To insert a node at the beginning of a linked list

newPtr->next = head;

head = newPtr;

Inserting at the beginning of a linked list

Inserting a Node into a Specified

Position of a Linked List

• Inserting at the end of a linked list is not a
special case if cur is NULL
 newPtr->next = cur;

 prev->next = newPtr;

Inserting at the end of a linked list

Inserting a Node into a Specified

Position of a Linked List

• Determining the point of insertion or deletion for

a sorted linked list of objects

 for(prev = NULL, cur= head;

 (cur != null)&&

 (newValue > cur->item);

 prev = cur, cur = cur->next;

A Pointer-Based Implementation of

the ADT List

• Public methods
 isEmpty

 getLength

 insert

 remove

 retrieve

• Private method
 find

• Private Data

Members
 head

 Size

• Local variables to
member functions
 cur

 prev

Constructors and Destructors

• Default constructor initializes size and head

• Copy constructor allows a deep copy

 Copies the array of list items and the number of items

• A destructor is required for dynamically allocated

memory

Comparing Array-Based and

Pointer-Based Implementations

• Size
 Increasing the size of a resizable array can waste

storage and time

• Storage requirements
 Array-based implementations require less memory

than a pointer-based ones

Comparing Array-Based and

Pointer-Based Implementations

• Access time
 Array-based: constant access time

 Pointer-based: the time to access the ith node
depends on i

• Insertion and deletions
 Array-based: require shifting of data

 Pointer-based: require a list traversal

Saving and Restoring a Linked List

by Using a File
• Use an external file to preserve the list between

runs

• Do not write pointers to a file, only data

• Recreate the list from the file by placing each
item at the end of the list
 Use a tail pointer to facilitate adding nodes to the end

of the list

 Treat the first insertion as a special case by setting
the tail to head

Passing a Linked List to a Function

• A function with access to a linked list’s head

pointer has access to the entire list

• Pass the head pointer to a function as a

reference argument

A head pointer as a value argument

Processing Linked Lists

Recursively

• Recursive strategy to display a list
 Write the first node of the list

 Write the list minus its first node

• Recursive strategies to display a list backward
 writeListBackward strategy

• Write the last node of the list

• Write the list minus its last node backward

4-28

Processing Linked Lists

Recursively
 writeListBackward2 strategy

• Write the list minus its first node backward

• Write the first node of the list

• Recursive view of a sorted linked list

 The linked list to which head points is a sorted list if

• head is NULL or

• head->next is NULL or

• head->item < head->next->item, and

 head->next points to a sorted linked list

4-29

Objects as Linked List Data

• Data in a linked list node can be an instance of a
class
typedef ClassName ItemType;

struct Node

{ ItemType item;

 Node *next;

}; //end struct

Node *head;

4-30

Circular Linked Lists

• Last node references the first node

• Every node has a successor

• No node in a circular linked list contains NULL

A circular linked list

Dummy Head Nodes

• Dummy head node
 Always present, even when the linked list is empty

 Insertion and deletion algorithms initialize prev to
reference the dummy head node, rather than NULL

A dummy head node

Doubly Linked Lists

• Each node points to both its predecessor and its

successor

• Circular doubly linked list

 precede pointer of the dummy head node points to

the last node

 next reference of the last node points to the dummy

head node

 No special cases for insertions and deletions

Doubly Linked Lists

(a) A circular doubly linked list with a dummy head node

(b) An empty list with a dummy head node

Doubly Linked Lists

• To delete the node to which cur points
 (cur->precede)->next = cur->next;

 (cur->next)->precede = cur->precede;

• To insert a new node pointed to by newPtr
before the node pointed to by cur
 newPtr->next = cur;

 newPtr->precede = cur->precede;

 cur->precede = newPtr;

 newPtr->precede->next = newPtr;

Application: Maintaining an

Inventory

• Operations on the inventory
 List the inventory in alphabetical order by title (L

command)

 Find the inventory item associated with title (I, M, D,
O, and S commands)

 Replace the inventory item associated with a title (M,
D, R, and S commands)

 Insert new inventory items (A and D commands)

The C++ Standard Template

Library

• The STL contains class templates for some
common ADTs, including the list class

• The STL provides support for predefined ADTs
through three basic items
 Containers are objects that hold other objects

 Algorithms act on containers

 Iterators provide a way to cycle through the contents
of a container

Summary

• The C++ new and delete operators enable
memory to be dynamically allocated and
recycled

• Each pointer in a linked list is a pointer to the
next node in the list

• Array-based lists use an implicit ordering
scheme; pointer-based lists use an explicit
ordering scheme

Summary

• Algorithms for insertions and deletions in a

linked list involve traversing the list and

performing pointer changes

 Inserting a node at the beginning of a list and deleting

the first node of a list are special cases

• A class that allocates memory dynamically

needs an explicit copy constructor and

destructor

Summary

• Recursion can be used to perform operations on

a linked list

• In a circular linked list, the last node points to the

first node

• Dummy head nodes eliminate the special cases

for insertion into and deletion from the beginning

of a linked list

