
C++ How to Program, 9/e

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Storage of data in memory is temporary.

 Files are used for data persistence - permanent retention of
data.

 Computers store files on secondary storage devices, such
as hard disks, CDs, DVDs, flash drives and tapes.

 In this chapter, we explain how to build C++ programs that
create, update and process data files.

 We consider both sequential files and random-access files.

 We compare formatted-data file processing and raw-data
file processing.

©1992-2014 by Pearson Education,
Inc. All Rights Reserved.

 C++ views each file as a sequence of bytes (Fig. 14.1).

 Each file ends either with an end-of-file marker or at a
specific byte number recorded in an operating-system-
maintained, administrative data structure.

 When a file is opened, an object is created, and a

stream is associated with the object.

 The streams associated with these objects provide
communication channels between a program and a
particular file or device.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 File-Processing Class Templates

 To perform file processing in C++, headers <iostream>
and <fstream> must be included.

 Header <fstream> includes the definitions for the
stream class templates basic_ifstream (for file input),
basic_ofstream (for file output) and basic_fstream (for
file input and output).

 Each class template has a predefined template
specialization that enables char I/O.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 The <fstream> library provides typedef aliases for
these template specializations.

◦ The typedef ifstream represents a specialization of
basic_ifstream that enables char input from a file.

◦ The typedef ofstream represents a specialization of
basic_ofstream that enables char output to files.

◦ The typedef fstream represents a specialization of
basic_fstream that enables char input from, and output to,
files.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 These templates derive from class templates
basic_istream, basic_ostream and basic_iostream,
respectively.

 Thus, all member functions, operators and
manipulators that belong to these templates also can
be applied to file streams.

 Figure 14.2 summarizes the inheritance relationships
of the I/O classes that we’ve discussed to this point.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 C++ imposes no structure on a file.

 Thus, a concept like that of a “record” does not exist in a C++ file.

 You must structure files to meet the application’s requirements.

 Figure 14.3 creates a sequential file that might be used in an accounts-receivable
system to help manage the money owed to a company’s credit clients.

 For each client, the program obtains the client’s account number, name and balance
(i.e., the amount the client owes the company for goods and services received in the
past).

 The data obtained for each client constitutes a record for that client.

 The account number serves as the record key.

 This program assumes the user enters the records in account number order.

◦ In a comprehensive accounts receivable system, a sorting capability would be provided to eliminate
this restriction.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Opening a File

 Figure 14.3 writes data to a file so we open the file output by creating an ofstream
object.

 Two arguments are passed to the object’s constructor—the filename and the file-open
mode (line 12).

 For an ofstream object, the file-open mode can be either ios::out (the default) to
output data to a file or ios::app to append data to the end of a file (without modifying
any data already in the file).

 Since ios::out is the default, the second constructor argument in line 12 is not required.

 Existing files opened with mode ios::out are truncated—all data in the file is discarded.

 If the specified file does not yet exist, then the ofstream object creates the file, using
that filename.

 Prior to C++11, the filename was specified as a pointer-based string - as of C++11, it
can also be specified as a string object.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 The ofstream constructor opens the file—this
establishes a “line of communication” with the file.

 By default, ofstream objects are opened for output, so
the open mode is not required in the constructor call.

 Figure 14.4 lists the file-open modes.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Opening a File via the open Member Function

 You can create an ofstream object without opening a
specific file - in this case, a file can be attached to the
object later.

 For example, the statement
 ofstream outClientFile;

 creates an ofstream object that’s not yet associated with a
file.

 The ofstream member function open opens a file and
attaches it to an existing ofstream object as follows:

 outClientFile.open("clients.dat", ios::out);

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Testing Whether a File Was Opened Successfully

 After creating an ofstream object and attempting to open it, the
program tests whether the open operation was successful.

 The if statement in lines 15–19 uses the overloaded ios member
function operator! to determine whether the open operation
succeeded.
◦ The condition returns a true value if either the failbit or the badbit is set

for the stream on the open operation.

 Some possible errors are
◦ attempting to open a nonexistent file for reading,

◦ attempting to open a file for reading or writing with-out permission

◦ opening a file for writing when no disk space is available.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Function exit terminates a program.

◦ The argument to exit is returned to the environment from
which the program was invoked.

◦ Passing EXIT_SUCCESS (also defined in <cstdlib>) to exit
indicates that the program terminated normally; passing any
other value (in this case EXIT_FAILURE) indicates that the
program terminated due to an error.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 The Overloaded void * Operator

 Another overloaded ios member function - operator void * - converts the
stream to a pointer, so it can be tested as 0 (i.e., the null pointer) or nonzero
(i.e., any other pointer value).

 When a pointer value is used as a condition, C++ interprets a null pointer in a
condition as the bool value false and interprets a non-null pointer as the bool
value true.

 If the failbit or badbit has been set for the stream, 0 (false) is returned.

 The condition in the while statement of lines 29–33 invokes the operator void
* member function on cin implicitly.

 The condition remains true as long as neither the failbit nor the badbit has
been set for cin.

 Entering the end-of-file indicator sets the failbit for cin.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 The operator void * function can be used to test an
input object for end-of-file, but you can also call
member function eof on the input object.

 Processing Data

 Figure 14.5 lists the keyboard combinations for
entering end-of-file for various computer systems.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 When end-of-file is encountered or bad data is entered, operator void *
returns the null pointer (which converts to the bool value false) and the while
statement terminates.

 The user enters end-of-file to inform the program to process no additional
data.

 The end-of-file indicator is set when the user enters the end-of-file key
combination.

 Line 31 writes a set of data to the file clients.txt, using the stream insertion
operator << and the outClientFile object associated with the file at the
beginning of the program.

 The data may be retrieved by a program designed to read the file (see
Section 14.4).

 The file created in Fig. 14.3 is simply a text file, so it can be viewed by any text
editor.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Closing a File

 Once the user enters the end-of-file indicator, main
terminates.

 This implicitly invokes outClientFile’s destructor, which
closes the clients.txt file.

 You also can close the ofstream object explicitly, using
member function close.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Files store data so it may be retrieved for processing
when needed.

 In this section, we discuss how to read data
sequentially from a file.

 Figure 14.6 reads records from the clients.txt file that
we created using the program of Fig. 14.3 and displays
the contents of these records.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Creating an ifstream object opens a file for input.

 The ifstream constructor can receive the filename and
the file open mode as arguments.

 Line 15 creates an ifstream object called inClientFile
and associates it with the clients.txt file.

 The arguments in parentheses are passed to the
ifstream constructor function, which opens the file and
establishes a “line of communication” with the file.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

ios::in should be the default for a file opened for input

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Opening a File for Input

 Objects of class ifstream are opened for input by
default.

 We could have used the statement

 ifstream inClientFile("clients.txt");

 to open clients.dat for input.

 Just as with an ofstream object, an ifstream object can
be created without opening a specific file, because a
file can be attached to it later.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Reading from the File

 Line 32 reads a set of data (i.e., a record) from the file.

 Each time line 32 executes, it reads another record
from the file into the variables account, name and
balance.

 When the end of file has been reached, the implicit call
to operator void * in the while condition returns the
null pointer (which converts to the bool value false),
the ifstream destructor function closes the file and the
program terminates.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 File Position Pointers

 To retrieve data sequentially from a file, programs normally start
reading from the beginning of the file and read all the data
consecutively until the desired data is found.

 It might be necessary to process the file sequentially several times
(from the beginning of the file) during the execution of a program.

 Both istream and ostream provide member functions for repositioning
the file-position pointer (the byte number of the next byte in the file
to be read or written).

◦ seekg (“seek get”) for istream

◦ seekp (“seek put”) for ostream

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Each istream object has a get pointer, which indicates
the byte number in the file from which the next input
is to occur, and each ostream object has a put pointer,
which indicates the byte number in the file at which
the next output should be placed.

 The statement

 inClientFile.seekg(0);

 repositions the file-position pointer to the beginning of
the file (location 0) attached to inClientFile.

 The argument to seekg normally is a long integer.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 A second argument can be specified to indicate the
seek direction, which can be

◦ ios::beg (the default) for positioning relative to the beginning
of a stream,

◦ ios::cur for positioning relative to the current position in a
stream or

◦ ios::end for positioning relative to the end of a stream

 The file-position pointer is an integer value that
specifies the location in the file as a number of bytes
from the file’s starting location (this is also referred to
as the offset from the beginning of the file).

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Some examples of positioning the get file-position pointer are

 // position to the nth byte of fileObject (assumes ios::beg)
fileObject.seekg(n);

 // position n bytes forward in fileObject
fileObject.seekg(n, ios::cur);

 // position n bytes back from end of fileObject
fileObject.seekg(n, ios::end);

 // position at end of fileObject
fileObject.seekg(0, ios::end);

 The same operations can be performed using ostream
member function seekp.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Member functions tellg and tellp are provided to
return the current locations of the get and put
pointers, respectively.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Credit Inquiry Program

 Figure 14.7 enables a credit manager to display the
account information for those customers with

◦ zero balances (i.e., customers who do not owe the company
any money),

◦ credit (negative) balances (i.e., customers to whom the
company owes money), and

◦ debit (positive) balances (i.e., customers who owe the
company money for goods and services received in the past)

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

this test will always fail!

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Data that is formatted and written to a sequential file as shown in Section 14.3
cannot be modified without the risk of destroying other data in the file.

 For example, if the name “White” needs to be changed to “Worthington,” the
old name cannot be overwritten without corrupting the file.

 The record for White was written to the file as

 300 White 0.00

 If this record were rewritten beginning at the same location in the file using
the longer name, the record would be

 300 Worthington 0.00

 The new record contains six more characters than the original record.

 Therefore, the characters beyond the second “o” in “Worthington” would
overwrite the beginning of the next sequential record in the file.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 The problem is that, in the formatted input/output model using
the stream insertion operator << and the stream extraction
operator >>, fields—and hence records—can vary in size.

◦ For example, values 7, 14, –117, 2074, and 27383 are all ints, which
store the same number of “raw data” bytes internally (typically four
bytes on 32-bit machines and eight bytes on 64-bit machines).

◦ However, these integers become different-sized fields, depending on
their actual values, when output as formatted text (character
sequences).

◦ Therefore, the formatted input/output model usually is not used to
update records in place.

◦ Use setw() for each field so all field sizes are the same

◦ Use a character array instead of a string object

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Such updating can be done awkwardly.

 For example, to make the preceding name change, the records

before 300 White 0.00 in a sequential file could be copied to a

new file, the updated record then written to the new file, and

the records after 300 White 0.00 copied to the new file.

 Then the old file could be deleted and the new file renamed.

 This requires processing every record in the file to update one
record.

 If many records are being updated in one pass of the file,
though, this technique can be acceptable.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Sequential files are inappropriate for instant-access applications, in which a
particular record must be located immediately.

 Common instant-access applications are

◦ airline reservation systems,

◦ banking systems,

◦ point-of-sale systems,

◦ automated teller machines and

◦ other kinds of transaction-processing systems that require rapid access to specific data.

 A bank might have hundreds of thousands (or even millions) of other
customers, yet, when a customer uses an automated teller machine, the
program checks that customer’s account in a few seconds or less for sufficient
funds.

 This kind of instant access is made possible with random-access files.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Individual records of a random-access file can be accessed directly
(and quickly) without having to search other records.

 C++ does not impose structure on a file. So the application that wants
to use random-access files must create them.

 Perhaps the easiest method is to require that all records in a file be
of the same fixed length.

 Using same-size, fixed-length records makes it easy for a program to
quickly calculate (as a function of the record size and the record key)
the exact location of any record relative to the beginning of the file.

 Figure 14.8 illustrates C++’s view of a random-access file composed of
fixed-length records (each record, in this case, is 100 bytes long).

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Data can be inserted into a random-access file without
destroying other data in the file.

 Data stored previously also can be updated or deleted
without rewriting the entire file.

 In the following sections, we explain how to create a
random-access file, enter data into the file, read the
data both sequentially and randomly, update the data
and delete data that is no longer needed.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 The ostream member function write outputs to the specified
stream a fixed number of bytes, beginning at a specific location
in memory.

 When the stream is associated with a file, function write writes
the data at the location in the file specified by the put file-
position pointer.

 The istream member function read inputs a fixed number of
bytes from the specified stream to an area in memory beginning
at a specified address.

 If the stream is associated with a file, function read inputs bytes
at the location in the file specified by the get file-position
pointer.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Writing Bytes with ostream Member Function write

 Outputting a four-byte integer as text could print as few digits as one or as
many as 11 (10 digits plus a sign, each requiring a single byte of storage)

 The following statement always writes the binary version of the integer’s four
bytes (on a machine with four-byte integers):

 outFile.write(reinterpret_cast
< const char * >(&number), sizeof(number));

 Function write treats its first argument as a group of bytes by viewing the
object in memory as a const char *, which is a pointer to a byte.

 Starting from that location, function write outputs the number of bytes
specified by its second argument - an integer of type size_t.

 istream function read can be used to read the four bytes back into an integer
variable.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Converting Between Pointer Types with the reinterpret_cast Operator

 Most pointers that we pass to function write as the first argument are not of
type const char *.

 Must convert the pointers to those objects to type const char *; otherwise,
the compiler will not compile calls to function write.

 C++ provides the reinterpret_cast operator for cases like this in which a
pointer of one type must be cast to an unrelated pointer type.

 Without a reinterpret_cast, the write statement that outputs the integer
number will not compile because the compiler does not allow a pointer of
type int * (the type returned by the expression &number) to be passed to a
function that expects an argument of type const char *—as far as the compiler
is concerned, these types are inconsistent.

 A reinterpret_cast is performed at compile time and does not change the
value of the object to which its operand points.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 In Fig. 14.11, we use reinterpret_cast to convert a
ClientData pointer to a const char *, which reinterprets
a ClientData object as bytes to be output to a file.

 Random-access file-processing programs typically write
one object of a class at a time, as we show in the
following examples.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Credit Processing Program

 Consider the following problem statement:

◦ Create a credit-processing program capable of storing at most
100 fixed-length records for a company that can have up to
100 customers. Each record should consist of an account
number that acts as the record key, a last name, a first name
and a balance. The program should be able to update an
account, insert a new account, delete an account and insert all
the account records into a formatted text file for printing.

 The next few sections create this credit-processing
program.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Figure 14.11 illustrates opening a random-access file,
defining the record format using an object of class
ClientData (Figs. 14.9–14.10) and writing data to the
disk in binary format.

 This program initializes all 100 records of the file
credit.dat with empty objects, using function write.

 Each empty object contains the account number 0,
empty last and first name strings and the balance 0.0.

 Each record is initialized with the space in which the
account data will be stored.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Objects of class string do not have uniform size, rather
they use dynamically allocated memory to
accommodate strings of various lengths.

 We must maintain fixed-length records, so class
ClientData stores the client’s first and last name in
fixed-length char arrays (declared in Fig. 14.9, lines
32–33).

 Member functions setLastName (Fig. 14.10, lines 35–
42) and setFirstName (Fig. 14.10, lines 51–58) each
copy the characters of a string object into the
corresponding char array.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Consider function setLastName.

 Line 38 invokes string member function size to get the
length of lastNameString.

 Line 39 ensures that length is fewer than 15 characters,
then line 40 copies length characters from
lastNameString into the char array lastName using
string member function copy.

 Member function setFirstName performs the same
steps for the first name.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Opening a File for Output in Binary Mode

 In Fig. 14.11, line 11 creates an ofstream object for the file

credit.dat.

 The second argument to the constructor:

 ios::out | ios::binary

indicates that we are opening the file for output in binary mode,

which is required if we are to write fixed-length records.

 Multiple file-open modes are combined by separating each

open mode from the next with the | operator, which is known

as the bitwise inclusive OR operator.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Lines 24–25 cause the blankClient (which was
constructed with default arguments at line 20) to be
written to the credit.dat file associated with ofstream
object outCredit.

 Operator sizeof returns the size in bytes of the object
contained in parentheses (see Chapter 8).

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 The first argument to function write at line 24 must be
of type const char *.

 However, the data type of &blankClient is Client-
Data *.

 To convert &blankClient to const char *, line 24 uses
the cast operator reinterpret_cast, so the call to write
compiles without issuing a compilation error.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Figure 14.12 writes data to the file credit.dat and uses
the combination of fstream functions seekp and write
to store data at exact locations in the file.

 Function seekp sets the “put” file-position pointer to a
specific position in the file, then write outputs the
data.

 Line 6 includes the header ClientData.h defined in
Fig. 14.9, so the program can use ClientData objects.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Opening a File for Input and Output in Binary Mode

 Line 16 uses the fstream object outCredit to open the

existing credit.dat file.

◦ The file is opened for input and output in binary mode by

combining the file-open modes ios::in, ios::out and ios::binary.

 Opening the existing credit.dat file in this manner ensures

that this program can manipulate the records written to

the file by the program of Fig. 14.11, rather than creating

the file from scratch.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Positioning the File Position Pointer

 Lines 47–48 position the put file-position pointer for
object outCredit to the byte location calculated by

 (client.getAccountNumber() - 1) *
 sizeof(ClientData)

 Because the account number is between 1 and 100, 1
is subtracted from the account number when
calculating the byte location of the record.

◦ Thus, for record 1, the file-position pointer is set to byte 0 of
the file.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 In this section, we develop a program that reads a file
sequentially and prints only those records that contain data.

 The istream function read inputs a specified number of bytes
from the current position in the specified stream into an object.

 For example, lines 31–32 from Fig. 14.13 read the number of
bytes specified by sizeof(ClientData) from the file associated
with ifstream object inCredit and store the data in the client
record.

 Function read requires a first argument of type char *.

 Since &client is of type ClientData *, &client must be cast to
char * using the cast operator reinterpret_cast.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Figure 14.13 reads every record in the credit.dat file sequentially, checks each
record to determine whether it contains data, and displays formatted outputs
for records containing data.

 The condition in line 35 uses the ios member function eof to determine when
the end of file is reached and causes execution of the while statement to
terminate.

 Also, if an error occurs when reading from the file, the loop terminates,
because inCredit evaluates to false.

 The data input from the file is output by function outputLine (lines 48–55),
which takes two arguments - an ostream object and a clientData structure to
be output.

 The ostream parameter type is interesting, because any ostream object (such
as cout) or any object of a derived class of ostream (such as an object of type
ofstream) can be supplied as the argument.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 If you examine the output window, you’ll notice that the records are listed in
sorted order (by account number).

 This is a consequence of how we stored these records in the file, using direct-
access techniques.

 Sorting using direct-access techniques is relatively fast.

 The speed is achieved by making the file large enough to hold every possible
record that might be created.

 This, of course, means that the file could be occupied sparsely most of the
time, resulting in a waste of storage.

 This is another example of the space-time trade-off: By using large amounts
of space, we can develop a much faster sorting algorithm.

 Fortunately, declining storage prices has made this less of an issue.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 We now present a substantial transaction-processing
program (Fig. 14.14) using a random-access file to
achieve “instant-access” processing.

 The program updates existing bank accounts, adds new
accounts, deletes accounts and stores a formatted
listing of all current accounts in a text file.

 We assume that the program of Fig. 14.11 has been
executed to create the file credit.dat and that the
program of Fig. 14.12 has been executed to insert the
initial data.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 The program has five options (Option 5 is for terminating the program).

 Option 1 calls function createTextFile to store a format-ted list of all the
account information in a text file called print.txt that may be printed.

 Function createTextFile (lines 80–116) takes an fstream object as an argument
to be used to input data from the credit.dat file.

 Function createTextFile invokes istream member function read (lines 102–103)
and uses the sequential-file-access techniques of Fig. 14.13 to input data from
credit.dat.

 Function outputLine, discussed in Section 14.9, is used to output the data to
file print.txt.

 Note that function createTextFile uses istream member function seekg (line
98) to ensure that the file-position pointer is at the beginning of the file.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Option 2 calls updateRecord (lines 119–157) to update an account.

 This function updates only an existing record, so the function first determines
whether the specified record is empty.

 If the record contains information, line 135 displays the record, using function
outputLine, line 140 inputs the transaction amount and lines 143–152
calculate the new balance and rewrite the record to the file.

 Option 3 calls function newRecord (lines 160–202) to add a new account to
the file.

 If the user enters an account number for an existing account, newRecord
displays an error message indicating that the account exists (lines 200–201).

 This function adds a new account in the same manner as the program of
Fig. 14.12.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 Option 4 calls function deleteRecord (lines 205–236) to
delete a record from the file.

 Line 208 prompts the user to enter the account number.

 Only an existing record may be deleted, so, if the specified
account is empty, line 235 displays an error message.

 If the account exists, lines 221–230 reinitialize that account
by copying an empty record (blankClient) to the file.

 Line 232 displays a message to inform the user that the
record has been deleted.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 This chapter and Chapter 13 introduced the object-oriented style of
input/output.

 An object’s member functions are not input or output with the
object’s data; rather, one copy of the class’s member functions
remains available internally and is shared by all objects of the class.

 When object data members are output to a disk file, we lose the
object’s type information.

 We store only the values of the object’s attributes, not type
information, on the disk.

 If the program that reads this data knows the object type to which the
data corresponds, the program can read the data into an object of that
type as we did in our random-access file examples.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 An interesting problem occurs when we store objects of different types in the
same file.

 How can we distinguish them (or their collections of data members) as we
read them into a program?

 The problem is that objects typically do not have type fields (we discussed this
issue in Chapter 12).

 One approach used by several programming languages is called object
serialization.

 A so-called serialized object is an object represented as a sequence of bytes
that includes the object’s data as well as information about the object’s type
and the types of data stored in the object.

 After a serialized object has been written to a file, it can be read from the file
and deserialized - that is, the type information and bytes that represent the
object and its data can be used to recreate the object in memory.

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

 C++ does not provide a built-in serialization
mechanism; however, there are third party and open
source C++ libraries that support object serialization.

 The open source Boost C++ Libraries (www.boost.org)
provide support for serializing objects in text, binary
and extensible markup language (XML) formats
(www.boost.org/libs/serialization/doc/index.html).

©1992-2014 by Pearson Education, Inc.
All Rights Reserved.

