
Maciej Sobieraj

Lecture 14

Outline

1. Examples

1. Inheritance

1. Example 1

2. Example 2

3. Example 3

4. Example 4

5. Example 5

2. Exceptions

1. Example 1

2. Example 2

3. Example 3

4. Example 4

5. Example 5

3. Operators

1. Example 1

2. Example 2

Example 1

• Write four classes to implement the printing of different

kinds of trees (they should consist of very simple ASCII

characters, i.e. '*', '/‚ and '\').

 One of the classes is a base for the other three. In the base

class, you should create a draw method – it's the only method of

this class and it's a virtual method. Next, in the derived classes,

implement this method with three different versions of drawing.

 In the main function, create a table of three pointers to objects of

the base class. Then create three objects of different kinds of

trees and assign pointers to them to cells of the previously

created table. After this, in the for loop, iterate over the table and

call the draw method from every element of the table.

Example 1

Example 1

Example 1

Outline

1. Examples

1. Inheritance

1. Example 1

2. Example 2

3. Example 3

4. Example 4

5. Example 5

2. Exceptions

1. Example 1

2. Example 2

3. Example 3

4. Example 4

5. Example 5

3. Operators

1. Example 1

2. Example 2

Example 2

• Let's assume you write a code for the game of checkers

(aka draughts).

 There are two types of pieces in this game: men and kings.

 You need to implement classes (one abstract for the pieces and

two separate classes for the men and the kings) to check if the

moves are correct.

• Men can only move one field forward along diagonals.

• In international checkers, kings can move any distance forward and

backward along unblocked diagonals. To simplify your program,

assume that the board is empty and you only have to check one

piece at a time.

 The starting position for one of the pieces is the b1 field. Call a

check method from the pointer to the base (Piece) class.

Example 2

Example 2

Example 2

Example 2

Outline

1. Examples

1. Inheritance

1. Example 1

2. Example 2

3. Example 3

4. Example 4

5. Example 5

2. Exceptions

1. Example 1

2. Example 2

3. Example 3

4. Example 4

5. Example 5

3. Operators

1. Example 1

2. Example 2

Example 3

• Write a hierarchy of two classes: base class IPAddress

and derived class IPAddressChecked.

 The first class holds the value of an IP address and the derived

class has one additional Boolean value (set to true if the IP is

correct, otherwise set to false).

• Both classes have a constructor, a copy constructor and the print

method.

 The print method in the derived class should also print the value

of its Boolean (Correct/Not Correct).

 Use the methods of the base class in the derived one.

 Write some test code to get input from the user.

 Create one IPAddress object and two IPAddressChecked

objects. Print the values for all three objects.

Example 3

Example 3

Example 3

Example 3

Outline

1. Examples

1. Inheritance

1. Example 1

2. Example 2

3. Example 3

4. Example 4

5. Example 5

2. Exceptions

1. Example 1

2. Example 2

3. Example 3

4. Example 4

5. Example 5

3. Operators

1. Example 1

2. Example 2

Example 4

• In one of the network programs you need to

store the IP addresses of a computer and other

devices.

 Create a class describing Network with an array of

IPAddress. Implement methods to:

• add one IPAddress to Network;

• print all addresses in Network.

 Create two Network objects and five IPAddress

objects. One IPAddress should be placed in both

networks.

 Get five addresses from the user.

 Print both networks.

Example 4

Example 4

Example 4

Outline

1. Examples

1. Inheritance

1. Example 1

2. Example 2

3. Example 3

4. Example 4

5. Example 5

2. Exceptions

1. Example 1

2. Example 2

3. Example 3

4. Example 4

5. Example 5

3. Operators

1. Example 1

2. Example 2

Example 5

• Below is a recipe for constructing a primitive car.

All class names start with a capital letter.

 Compose a Car from some objects, you should use:

one Engine, four Wheels, one Chassis, ten Lights,

and one Body. Feel free to define the attributes of

these classes.

 Every class (including Car) must have a print method.

In the print method of Car, you just need to call the

print method from all the objects.

 Create one car and call a print method.

Example 5

Example 5

Example 5

Example 5

Example 5

Outline

1. Examples

1. Inheritance

1. Example 1

2. Example 2

3. Example 3

4. Example 4

5. Example 5

2. Exceptions

1. Example 1

2. Example 2

3. Example 3

4. Example 4

5. Example 5

3. Operators

1. Example 1

2. Example 2

Example 1

• Improve this simple program so that it prints a message

when the user inputs invalid data. Add code to throw the

exception manually using the throw keyword when a

user inputs 0.

Example 1

Outline

1. Examples

1. Inheritance

1. Example 1

2. Example 2

3. Example 3

4. Example 4

5. Example 5

2. Exceptions

1. Example 1

2. Example 2

3. Example 3

4. Example 4

5. Example 5

3. Operators

1. Example 1

2. Example 2

Example 2

• Insert a try-catch block into this program to solve

potential problems with arithmetic operations.

Remember to inform the user of any exceptions in

simple words.

Example 2

Outline

1. Examples

1. Inheritance

1. Example 1

2. Example 2

3. Example 3

4. Example 4

5. Example 5

2. Exceptions

1. Example 1

2. Example 2

3. Example 3

4. Example 4

5. Example 5

3. Operators

1. Example 1

2. Example 2

Example 3

• Try to change the program below (both the div

and main functions).

 Insert a throw and a try-catch block instead of a

Boolean value and res parameter (change it to a

function return value). Remember to inform the user

of any exceptions in simple words.

 Try to make two versions of your code, one that

catches the division by zero exception, and another

that checks arguments and then throws an exception

(when the argument isn't proper).

Example 3

Example 3

Example 3

Example 3

Outline

1. Examples

1. Inheritance

1. Example 1

2. Example 2

3. Example 3

4. Example 4

5. Example 5

2. Exceptions

1. Example 1

2. Example 2

3. Example 3

4. Example 4

5. Example 5

3. Operators

1. Example 1

2. Example 2

Example 4

• Write a program that calculates the area of some

simple figures (i.e. a square and a rectangle).

One function per figure.

 Check if the function arguments are greater than 0 – if

they aren't, throw an exception.

 This program should use your own exceptions to

communicate with a higher-level code.

 Add some attribute in your exception to pass a

message to the user.

Example 4

Example 4

Example 4

Outline

1. Examples

1. Inheritance

1. Example 1

2. Example 2

3. Example 3

4. Example 4

5. Example 5

2. Exceptions

1. Example 1

2. Example 2

3. Example 3

4. Example 4

5. Example 5

3. Operators

1. Example 1

2. Example 2

Example 5

• Write a class that holds a (2×2) matrix, and add two

methods to work with files:

 one method to load the matrix from a file (in any format)

 and one method to save the matrix to a file (in the same format).

• Add code to handle exceptional situations (file not found

and no rights to file), print a message and re-throw an

exception.

• Add a try-catch block in the proper places. Simulate both

situations handled (try to load a nonexistent file, and try

to save a file in a path where you have no proper rights).

Example 5

Example 5

Outline

1. Examples

1. Inheritance

1. Example 1

2. Example 2

3. Example 3

4. Example 4

5. Example 5

2. Exceptions

1. Example 1

2. Example 2

3. Example 3

4. Example 4

5. Example 5

3. Operators

1. Example 1

2. Example 2

Example 1

• Write a container class that holds the values of

simple matrices (with a 2x2 size).

 Add operators (i.e. << and >>) to print this matrix on

the screen and get the values of this matrix.

 Test this class with different values.

 Use only a constructor to create a matrix and use

operators to get the values from the user and to print

the matrices to the user.

Example 1

Example 1

Example 1

Example 1

Example 1

Outline

1. Examples

1. Inheritance

1. Example 1

2. Example 2

3. Example 3

4. Example 4

5. Example 5

2. Exceptions

1. Example 1

2. Example 2

3. Example 3

4. Example 4

5. Example 5

3. Operators

1. Example 1

2. Example 2

Example 2

• Prepare a container class for a binary tree structure.

 The binary tree is a tree data structure where each node has

zero, one or two child nodes. These child nodes are referred to

as the left child and the right child. This class consists of three

fields:

• a field with a value;

• a pointer to the left child;

• a pointer to the right child.

 Implement a method to add a value to a tree, test it with some

values (you can hard-code the values – testing should be easier

and faster).

 Overload the operator << to print all nodes inorder (inorder is a

tree traversal method where you first traverse the left child

inorder, then print the value of the current node and then

traverse the right child inorder).

Example 2

Example 2

Example 2

Example 2

Example 2

