Ćwiczenie – Konfiguracja routingu między sieciami VLAN

Topologia

Tabela adresacji

Urządzenie	Interfejs	Adres IP	Maska podsieci	Brama domyślna
R1	G0/0	192.168.20.1	255.255.255.0	N/A
	G0/1	192.168.10.1	255.255.255.0	N/A
S1	VLAN 10	192.168.10.11	255.255.255.0	192.168.10.1
S2	VLAN 10	192.168.10.12	255.255.255.0	192.168.10.1
PC-A	NIC	192.168.10.3	255.255.255.0	192.168.10.1
РС-В	NIC	192.168.20.3	255.255.255.0	192.168.20.1

Cele nauczania

Część 1: Konfiguracja podstawowych ustawień sieciowych urządzeń

Część 2: Konfiguracja VLAN oraz połączeń trunkowych na przełącznikach

Część 3: Weryfikacja połączeń trunkowych, sieci VLAN, routingu oraz łączności

Wprowadzenie

Tradycyjny routing pomiędzy sieciami VLAN jest obecnie rzadkością, jednak konieczne jest nabycie umiejętności konfigurowania oraz zrozumienie tego typu routingu, zanim przejdziemy do zagadnienia routingu między-VLAN metodą tzw. "routera na patyku" (opartego na łączach trunkowych) czy konfigurowania przełączania w Warstwie 3. Routing per-interfejs spotykany jest także w firmach z niewielkimi sieciami. Jedną z korzyści tradycyjnego routingu między-VLAN jest łatwość konfiguracji.

W tym ćwiczeniu studenci będą konfigurować jeden router oraz dwa przełączniki połączone ze sobą interfejsami Gigabit Ethernet. Na przełącznikach skonfigurowane zostaną dwie osobne sieci VLAN a następnie ustawiony routing pomiędzy nimi.

Uwaga: W treści ćwiczenia udostępniono minimalny zestaw komend niezbędny do skonfigurowania routera i przełączników. Komendy potrzebne do skonfigurowania VLAN na przełączniku zamieszczono w Załączniku A niniejszego ćwiczenia. Rekomenduje się podjęcie próby samodzielnego skonfigurowania przełącznika bez odwoływania się do tego załącznika.

Uwaga: Routery wykorzystywane w laboratoriach CCNA to Cisco 1941 Integrated Services Routers (ISR) z systemem operacyjnym Cisco IOS, Release 15.2(4)M3(universalk9 image). Wykorzystywane przełączniki to Cisco Catalyst 2960s z systemem operacyjnym Cisco IOS, Release 15.0(2) (lanbasek9 image). Dopuszczalne jest także użycie innych routerów i przełączników oraz systemów operacyjnych Cisco. Zależnie od modelu oraz systemu operacyjnego, dostępne komendy oraz ich wyniki mogą się różnić od tych pokazanych w niniejszym ćwiczeniu. W Tabeli interfejsów routera, na końcu niniejszej instrukcji, znajdują się identyfikatory poszczególnych interfejsów.

Uwaga: Proszę się upewnić, że routery i przełączniki zostały zresetowane i nie posiadają konfiguracji startowych (startup). W razie niepewności należy się skonsultować z prowadzącym.

Wymagane zasoby

- 1 router (Cisco 1941 z systemem Cisco IOS Release 15.2(4)M3 lub porównywalnym)
- 1 przełącznik (Cisco 2960 with Cisco IOS Release 15.0(2) lanbasek9 lub kompatybilny)
- 2 komputery (Windows 7, Vista, lub XP z programem do emulacji terminala, np. Tera Term)
- Kable konsolowe do konfiguracji urządzeń Cisco IOS poprzez porty konsolowe
- Kable sieciowe zgodnie z pokazaną topologią.

Część 1. Budowa sieci i konfiguracja podstawowych nastaw urządzeń

W zadaniu 1 zestawiona zostanie topologia sieciowa, poprzedzona (w razie potrzeby) wykasowaniem istniejącej konfiguracji. Podłącz kable sieciowe zgodnie z pokazaną topologią.

Krok 1: Zainicjalizuj i przeładuj router oraz przełączniki.

Krok 2: Skonfiguruj podstawowe ustawienia na R1.

- a. Wyłącz opcję DNS lookup.
- b. Przypisz nazwę do urządzenia.
- c. Przypisz class jako szyfrowane hasło dostępu do trybu uprzywilejowanego EXEC.
- d. Przypisz cisco jako hasło dostępu z konsoli oraz połączeń vty i włącz opcję login.
- e. Skonfiguruj adresy i włącz interfejsy G0/0 I G0/1.

Krok 3: Skonfiguruj podstawowe ustawienia na S1 i S2.

- a. Wyłącz opcję DNS lookup.
- b. Przypisz nazwę do urządzenia.
- c. Przypisz class jako szyfrowane hasło dostępu do trybu uprzywilejowanego EXEC.
- d. Przypisz cisco jako hasło dostępu z konsoli oraz połączeń vty i włącz opcję login.

Krok 4: Skonfiguruj podstawowe ustawienia na PC-A i PC-B.

Skonfiguruj na PC-A i PC-B adresy IP oraz adres bramy domyślnej, zgodnie z tabelą adresacji.

Część 2. Konfiguracja sieci VLAN i połączeń trunkowych na przełącznikach

W zadaniu 2 skonfigurowane zostaną sieci VLAN oraz połączenia trunkowe na przełącznikach.

Krok 1: Skonfiguruj sieci VLAN na S1.

- a. Utwórz VLAN 10 i przypisz nazwę Student.
- b. Utwórz VLAN 20 i przypisz nazwę Faculty-Admin.
- c. Skonfiguruj interfejs F0/1 jako port trunkowy.
- d. Przypisz porty F0/5 i F0/6 do VLAN 10 i skonfiguruj je jako porty jako dostępowe.
- e. Przypisz adres IP do sieci VLAN 10 i włącz ją, zgodnie z tabelą adresacji.
- f. Skonfiguruj bramę domyślną zgodnie z tabelą adresacji.

Krok 2: Skonfiguruj sieci VLAN na S2.

- a. Utwórz VLAN 10 i przypisz nazwę Student.
- b. Utwórz VLAN 20 i przypisz nazwę Faculty-Admin.
- c. Skonfiguruj interfejs F0/1 jako port trunkowy.
- d. Przypisz porty F0/11 i F0/18 do VLAN 20 i skonfiguruj te porty jako dostępowe.
- e. Przypisz adres IP do sieci VLAN 10 i włącz ją, zgodnie z tabelą adresacji.
- f. Skonfiguruj bramę domyślną zgodnie z tabelą adresacji.

Część 3. Weryfikacja łącza trunkowego, sieci VLAN, routing i łączności

Krok 1: Zweryfikuj tablicę routingu na R1.

- a Na R1, wydaj komendę show ip route. Jakie ścieżki zostały wylistowane na R1?
- b. Wydaj komendę show interface trunk na S1 i S2. Czy port F0/1 na obu przełącznikach został ustawiony trunk? ______
- c. Wydaj komendę show vlan brief na S1 i S2. Upewnij się, że sieci VLAN 10 i VLAN 20 są włączone i że na obu przełącznikach zostały do nich przypisane właściwe porty. Dlaczego F0/1 nie znajduje się na liście aktywnych sieci VLAN?

S1# show vlan brief

d. Wydaj komendę ping z PC-A w sieci VLAN 10 do PC-B w sieci VLAB 20. Jeżeli routing pomiędzy sieciami VLAN działa poprawnie, test łączności pomiędzy siecią 192.168.10.0 a siecią 192.168.20.0 zakończy się powodzeniem.

Uwaga: może się okazać konieczne wyłączenie firewall-a na PC, aby umożliwić połączenie pomiędzy oboma PC.

e. Sprawdź połączenie między urządzeniami. Test komendą ping powinien powieść się pomiędzy wszystkimi urządzeniami. Znajdź błędy, jeżeli tak się nie stało.

Do przemyślenia

1. Jakie dostrzegasz korzyści ze stosowania tradycyjnego routingu między sieciami VLAN?

Tabela interfejsów routera

I.

Interfejsy routera						
Model routera	Interfejs Ethernet #1	Interfejs Ethernet #2	Interfejs Serial #1	Interfejs Serial #2		
1800	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)		
1900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)		
2801	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)		
2811	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)		
2900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)		

Uwaga: Aby dowiedzieć się jak router jest skonfigurowany należy spojrzeć na jego interfejsy i zidentyfikować typ urządzenia oraz liczbę jego interfejsów. Nie ma możliwości wypisania wszystkich kombinacji i konfiguracji dla wszystkich routerów. Powyższa tabela zawiera identyfikatory dla możliwych kombinacji interfejsów szeregowych i ethernetowych w urządzeniu. Tabela nie uwzględnia żadnych innych rodzajów interfejsów, pomimo że podane urządzenia mogą takie posiadać np. interfejs ISDN BRI. Opis w nawiasie (przy nazwie interfejsu) to dopuszczalny w systemie IOS akronim, który można użyć przy wpisywaniu komend.

Załącznik A: Komendy konfiguracyjne

Przełącznik S1

Przełącznik S2

S2(config) # vlan 10
S2(config-vlan) # name Student
S2(config-vlan) # exit
S2(config) # vlan 20
S2(config-vlan) # name Faculty-Admin

```
S2(config-vlan)# exit
S2(config)# interface f0/1
S2(config-if)# switchport mode trunk
S2(config-if)# interface f0/11
S2(config-if)# switchport mode access
S2(config-if)# switchport access vlan 20
S2(config-if)# interface f0/18
S2(config-if)# switchport mode access
S2(config-if)# switchport access vlan 20
S2(config-if)# not access vlan 10
S2(config-if)# interface vlan 10
S2(config-if)# no shut
S2(config-if)# no shut
S2(config-if)# p default-gateway 192.168.10.1
```