Ćwiczenie – Konfiguracja routingu inter-VLAN 802.1Q opartego na łączach trunk

Topologia

Tabela adresacji

Urządzenie	Interfejs	Adres IP	Maska podsieci	Brama domyślna
R1	G0/1.1	192.168.1.1	255.255.255.0	N/A
	G0/1.10	192.168.10.1	255.255.255.0	N/A
	G0/1.20	192.168.20.1	255.255.255.0	N/A
	Lo0	209.165.200.225	255.255.255.224	N/A
S1	VLAN 1	192.168.1.11	255.255.255.0	192.168.1.1
S2	VLAN 1	192.168.1.12	255.255.255.0	192.168.1.1
PC-A	NIC	192.168.10.3	255.255.255.0	192.168.10.1
PC-B	NIC	192.168.20.3	255.255.255.0	192.168.20.1

Specyfikacja portow na przełącznika	acn
-------------------------------------	-----

Porty	Przypisanie	Sieć
S1 F0/1	802.1Q Trunk	N/A
S2 F0/1	802.1Q Trunk	N/A
S1 F0/5	802.1Q Trunk	N/A
S1 F0/6	VLAN 10 – Students	192.168.10.0/24
S2 F0/18	VLAN 20 – Faculty	192.168.20.0/24

Cele

Część 1: Konfiguracja podstawowych ustawień urządzeń sieciowych

Część 2: Konfiguracja sieci VLAN i łączy trunkowych na przełącznikach

Część 3: Konfiguracja routingu inter-VLAN w oparciu o trunk

Wprowadzenie

Druga metoda zapewniania routingu i łączności pomiędzy wieloma sieciami VLAN, polega na wykorzystaniu łączy trunkowych 802.1Q pomiędzy jednym (lub więcej) przełącznikiem a pojedynczym interfejsem routera. Metoda ta znana jest jako "router na patyku". Polega ona na podziale interfejsu routera na wiele podinterfejsów (subinterface) tworzących logiczne ścieżki do wszystkich podłączonych sieci VLAN.

W tym ćwiczeniu studenci będą konfigurować routing między sieciami VLAN oraz sprawdzać połączenie z komputerami znajdującymi się w różnych sieciach VLAN oraz z interfejsem wirtualnym (loopback) na routerze.

Uwaga: W ćwiczeniu tym zawarte są podstawowe instrukcje niezbędne do skonfigurowania routingu inter-VLAN opartego na łączach trunkowych. Pozostałe komendy zamieszczone są w Załączniku A. Rekomenduje się podjęcie próby samodzielnego skonfigurowania przełącznika bez odwoływania się do tego załącznika.

Uwaga: Routery wykorzystywane w laboratoriach CCNA to Cisco 1941 Integrated Services Routers (ISR) z systemem operacyjnym Cisco IOS, Release 15.2(4)M3(universalk9 image). Wykorzystywane przełączniki to Cisco Catalyst 2960s z systemem operacyjnym Cisco IOS,Release 15.0(2) (lanbasek9 image). Dopuszczalne jest także użycie innych routerów i przełączników oraz systemów operacyjnych Cisco. Zależnie od modelu oraz systemu operacyjnego, dostępne komendy oraz ich wyniki mogą się różnić od tych pokazanych w niniejszym ćwiczeniu. W Tabeli interfejsów routera, na końcu niniejszej instrukcji, znajdują się identyfikatory poszczególnych interfejsów.

Uwaga: Proszę się upewnić, że routery i przełączniki zostały zresetowane i nie posiadają konfiguracji startowych (startup). W razie niepewności należy się skonsultować z prowadzącym.

Wymagane zasoby

- 1 router (Cisco 1941 z systemem Cisco IOS Release 15.2(4)M3 lub porównywalnym)
- 2 przełączniki (Cisco 2960 with Cisco IOS Release 15.0(2) lanbasek9 lub kompatybilne)
- 2 komputery (Windows 7, Vista, lub XP z programem do emulacji terminala, np. Tera Term)
- Kable konsolowe do konfiguracji urządzeń Cisco IOS poprzez porty konsolowe
- Kable sieciowe zgodnie z pokazaną topologią.

Część 1: Budowa sieci i konfiguracja podstawowych ustawień urządzeń

W części 1. zestawiona zostanie podstawowa topologia sieciowa oraz skonfigurowane zostaną komputery PC, przełączniki i router.

Krok 1: Podłącz kable sieciowe wg pokazanej topologii.

Krok 2: Skonfiguruj komputery PC.

Krok 3: Zainicjalizuj i zrestartuj router oraz przełączniki.

Krok 4: Skonfiguruj podstawowe ustawienia na każdym z przełączników.

- a. Wyłącz opcję DNSlookup.
- b. Przypisz nazwę do urządzenia, jak pokazano na rysunku topologii.
- c. Przypisz class jako hasło dostępu do trybu uprzywilejowanego EXEC.
- d. Przypisz cisco jako hasło dostępu z konsoli oraz połączeń vty.
- e. Dla połączenia konsolowego ustaw opcję logging synchronous.
- f. Skonfiguruj adres IP dla sieci VLAN1 na obu przełącznikach.
- g. Skonfiguruj bramę domyślną na obu przełącznikach.
- h. Wyłącz administracyjnie wszystkie niewykorzystywane porty na przełączniku.
- i. Skopiuj konfigurację bieżącą do konfiguracji startowej.

Krok 5: Skonfiguruj podstawowe ustawienia na routerze.

- a. Wyłącz opcję DNSlookup.
- b. Przypisz nazwę do urządzenia, jak pokazano na rysunku topologii.
- c. Skonfiguruj adres IP na interfejsie Lo0 wg Tablicy adresacji. Nie konfiguruj jeszcze podinterfejsów. Zostaną one skonfigurowane dopiero w części 3.
- d. Przypisz cisco jako hasło dostępu z konsoli oraz połączeń vty.
- e. Przypisz class jako hasło dostępu do trybu uprzywilejowanego EXEC.
- f. Dla połączenia konsolowego ustaw opcję **logging synchronous**, aby zapobiec pojawianiu się komunikatów konsolowych w trakcie wpisywania komend.
- g. Skopiuj konfigurację bieżącą do konfiguracji startowej.

Część 2: Konfiguracja sieci VLAN oraz łączy trunkowych na przełącznikach

W części 2, skonfigurowane zostaną sieci VLAN oraz łącze trunkowe na przełącznikach.

Uwaga: Wymagane komendy zamieszczone są w Załączniku A. Rekomenduje się podjęcie próby samodzielnego skonfigurowania przełącznika bez odwoływania się do tego załącznika.

Krok 1: Skonfiguruj sieci VLAN na przełączniku S1.

a. Na S1, skonfiguruj sieci VLAN wraz z ich nazwami podanymi w tabeli **Specyfikacja portów na przełącznikach**. Napisz poniżej, jakich komend użyłeś(aś):

- b. Na S1, skonfiguruj interfejs podłączony do R2 jako łącze trunkowe. Skonfiguruj także interfejs podłączony do S2 jako łącze trunkowe. Napisz poniżej, jakich komend użyłeś(aś):
- c. Na S1, przypisz do sieci VLAN 10 port dostępowy, do którego podłączony jest PC-A. Napisz poniżej, jakich komend użyłeś(aś):

Krok 2: Skonfiguruj sieci VLAN na przełączniku S2.

- a. Na S2, skonfiguruj sieci VLAN wraz z ich nazwami podanymi w tabeli **Specyfikacja portów na przełącznikach**.
- b. Na S2, upewnij się, że nazwy sieci VLAN oraz ich numery są zgodne z tymi na S1. Napisz poniżej, jakich komend użyłeś(aś):
- c. Na S2, przypisz do sieci VLAN20 port dostępowy, do którego podłączony jest PC-B.
- d. Na S2, skonfiguruj interfejs przyłączony do S1 jako trunkowy.

Część 3: Konfiguracja routingu inter-VLAN 802.1Q opartego na łączach trunkowych

W części 3, skonfigurujesz router R2 tak, aby umożliwiał routowanie wielu sieci VLAN poprzez utworzenie osobnego podinterfejsu dla każdej sieci VLAN. Metoda ta nosi nazwę "router na patyku".

Uwaga: Komendy wymagane w części 3 zamieszczone są w Załączniku A. Rekomenduje się podjęcie próby samodzielnego skonfigurowania przełącznika bez odwoływania się do tego załącznika.

Krok 1: Skonfiguruj podinterfejs dla VLAN 1.

- a. Utwórz podinterfejs na R1 G0/1 dla VLAN 1, używając '1' jako identyfikatora podinterfejsu. Napisz poniżej, jakich komend użyłeś(aś):
- b. Przypisz podinterfejs do VLAN 1. Napisz poniżej, jakich komend użyłeś(aś):
- c. Ustaw adres IP na podinterfejsie, zgodnie z Tabelą adresacji. Napisz poniżej, jakich komend użyłeś(aś):

Krok 2: Skonfiguruj podinterfejs dla VLAN 10.

- a. Utwórz podinterfejs na R1 G0/1 dla VLAN 10, używając '10' jako identyfikatora podinterfejsu.
- b. Przypisz podinterfejs do VLAN 10.
- c. Ustaw adres IP na podinterfejsie, zgodnie z Tabelą adresacji.

Krok 3: Skonfiguruj podinterfejs dla VLAN 20.

a. Utwórz podinterfejs na R1 G0/1 dla VLAN20, używając '20' jako identyfikatora podinterfejsu.

- b. Przypisz podinterfejs do VLAN 20.
- c. Ustaw adres IP na podinterfejsie, zgodnie z Tabelą adresacji.

Krok 4: Uruchom interfejs G0/1.

Uruchom interfejs G0/1. Napisz poniżej, jakich komend użyłeś(aś):

Krok 5: Sprawdź połączenie.

Wpisz komendę pozwalającą na wyświetlenie tabeli routingu na R1. Które sieci zostały wyświetlone?

Czy jest możliwe połączenie z PC-A, (komenda ping) z bramą domyślną VLAN 10?_____

Czy jest możliwe połączenie z PC-A (komenda ping) z PC-B? ____

Czy jest możliwe połączenie z PC-A (komenda ping) z Lo0?

Czy jest możliwe połączenie z PC-A (komenda ping) z S2?

Jeśli odpowiedź na którekolwiek pytanie brzmiała NIE, znajdź błędy w konfiguracji i popraw je.

Do przemyślenia

1. Jakie korzyści dostrzegasz ze stosowania routingu inter-VLAN 802.1Q opartego na łączach trunkowych?

Tabela interfejsów routera

Interfejsy routera								
Model routera	Interfejs Ethernet #1	Interfejs Ethernet #2	Interfejs Serial #1	Interfejs Serial #2				
1800	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)				
1900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)				
2801	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)				
2811	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)				
2900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)				

Uwaga: Aby dowiedzieć się jak router jest skonfigurowany należy spojrzeć na jego interfejsy i zidentyfikować typ urządzenia oraz liczbę jego interfejsów. Nie ma możliwości wypisania wszystkich kombinacji i konfiguracji dla wszystkich routerów. Powyższa tabela zawiera identyfikatory dla możliwych kombinacji interfejsów szeregowych i ethernetowych w urządzeniu. Tabela nie uwzględnia żadnych innych rodzajów interfejsów, pomimo że podane urządzenia mogą takie posiadać np. interfejs ISDN BRI. Opis w nawiasie (przy nazwie interfejsu) to dopuszczalny w systemie IOS akronim, który można użyć przy wpisywaniu komend.

Załącznik A: Komendy konfiguracyjne

Przełącznik (switch) S1

S1(config)#**vlan 10**

```
S1(config-vlan)#name Students
S1(config-vlan)#vlan 20
S1(config-vlan)#name Faculty
S1(config-vlan)#exit
S1(config)#interface f0/1
S1(config-if)#switchport mode trunk
S1(config-if)#interface f0/5
S1(config-if)#interface f0/6
S1(config-if)#switchport mode access
S1(config-if)#switchport access vlan 10
```

Przełącznik (switch) S2

```
S2(config) #vlan 10
S2(config-vlan) #name Students
S2(config-vlan) #vlan 20
S2(config-vlan) #name Faculty
S2(config) # interface f0/1
S2(config-if) # switchport mode trunk
S2(config-if) #interface f0/18
S2(config-if) #switchport mode access
S2(config-if) #switchport access vlan 20
```

Router R1

```
R1 (config) #interface g0/1.1
R1 (config-subif) #encapsulation dot1Q 1
R1 (config-subif) #ip address 192.168.1.1 255.255.255.0
R1 (config-subif) #interface g0/1.10
R1 (config-subif) #encapsulation dot1Q 10
R1 (config-subif) #ip address 192.168.10.1 255.255.255.0
R1 (config-subif) #interface g0/1.20
R1 (config-subif) #encapsulation dot1Q 20
R1 (config-subif) #ip address 192.168.20.1 255.255.255.0
R1 (config-subif) #encapsulation dot1Q 20
R1 (config-subif) #ip address 192.168.20.1 255.255.255.0
R1 (config-subif) #exit
R1 (config) # interface g0/1
R1 (config) # interface g0/1
R1 (config) # interface g0/1
```