
Lab 5.3.2 Singly linked list: part 2
Objectives

Familiarize the student with:

implementing data structures in C++;
preventing memory leaks and deallocating acquired resources.

Scenario

Let's continue working on our list.

We're currently making one serious error: we're not cleaning up after ourselves and we're leaking memory.

Add a destructor to your List class. The destructor should delete all the Nodes in the list, leaving it empty.

To help you make sure that you've deleted all the elements, we've added some text output to the Node constructor and destructor.

CPA: Programming
Essentials in C++ C++ INSTITUTE - PROGRAM YOUR FUTURE

© 2017 C++ Institute. All rights reserved. Last updated: March 07, 2017 | www.cppinstitute.org Page 1 of 2

#include <iostream>

using namespace std;

class Node
{
public:
 Node(int val);
 ~Node();
 int value;
 Node* next;
};

Node::Node(int val) : value(val), next(nullptr)
{
 cout << "+Node" << endl;
}

Node::~Node()
{
 cout << "-Node" << endl;
}

class List
{
public:
 List();
 void push_front(int value);
 bool pop_front(int "value);
private:
 Node* head;
};

// ...

int main()
{
 List list;
 //
 list.push_front(1);
 list.push_front(2);
 list.push_front(3);
 list.push_front(4);

 return 0;
}

Example input

Example output

+Node
+Node
+Node
+Node
-Node
-Node
-Node
-Node

Lab 5.3.2 Singly linked list: part 2

© 2017 C++ Institute. All rights reserved. Last updated: March 07, 2017 | www.cppinstitute.org Page 2 of 2

	Lab 5.3.2 Singly linked list: part 2
	Objectives
	Scenario
	Example input
	Example output

