
Maciej Sobieraj

Lecture 1

Outline

1. Introduction to computer programming

1. Different languages for different purposes

2. Your first program

3. Integer values, integer variables and comments

4. Quiz

Natural language vs programming

language

• At least one language accompanies us throughout

our whole lives – it's our native language

• The languages we use to communicate with other

people are called natural languages.

• The languages defined by international standards,

and although they are understood by many people,

the exchange of thoughts between human-beings is

not their most important application – Such

languages are programming languages.

Natural language vs programming

language

• For example, rules determine which symbols

(letters, digits, punctuation marks, and so on) could

be used in the language. This part of the definition

of the language is called lexicon.

• Another set of rules determines the appropriate

ways of collating the symbols – this is the syntax of

the language.

• We would also like to be able to recognize the

meaning of every statement expressed in the given

language – and this is what we call semantics.

Natural language vs programming

language

• A computer it’s like a well-trained dog – it responds

only to a predetermined set of known commands.

• A complete set of well-known commands is called

an instruction list, sometimes abbreviated to IL.

• The IL is in fact the alphabet of a language,

commonly known as a machine language. This is

the simplest and most primary language we can use

to give commands to our computer.

Natural language vs programming

language

• Computer programming is the act of composing

selected commands (instructions) in the proper

order so that a desired effect is produced.

• Programs written in machine language are very

difficult for humans to understand, including

experienced programmers.

• need for some kind of bridge between the human

language (natural language) and the computer

language (machine language). That bridge is also a

language – an intermediate common language for

humans and computers to work together. Such

languages are often called high-level

programming languages.

Natural language vs programming

language

• A high-level programming language is at least

somewhat similar to a natural language; it uses

symbols, words and conventions readable to

humans. This language enables humans to express

complex commands for computers.

• We can just translate our program into machine

language. Moreover, the translation can be done by

a computer, making the whole process fast and

efficient.

Natural language vs programming

language

• The translation we are referring to is made by a

specialized computer program called a compiler.

The process of translating from a high-level

language into a machine language is called

compilation.

• The main task is to write a program in accordance

with the rules of the chosen programming language.

Such a program (which in fact is just text) is called

the source code, or simply source, while the file

which contains the source is called the source file.

Natural language vs programming

language

• If the compiler doesn’t notice any mistakes in your

source, the result of its work will be a file containing

your program translated into machine language.

That file is commonly called an executable file.

• What is the most common use of “C”? It is the so-

called general-purpose programming language,

i.e., suitable for almost any programming project

and at the same time not particularly predestined to

any specific, narrow class of applications. It’s best if

used for coding drivers, embedded applications or

operating systems (for example, the Linux kernel is

mainly coded in “C”).

Outline

1. Introduction to computer programming

1. Different languages for different purposes

2. Your first program

3. Integer values, integer variables and comments

4. Quiz

Your first program

• We want a short and rather meaningless text to

appear on the screen.

 „It's me, your first program”.

• What further steps should our first program

perform? Let's try to enumerate them here:

1. to start;

2. to write the text on the screen;

3. to stop;

• This sort of structured and semi-formal

description of each step of the program is called

an algorithm.

Your first program

Your first program

• The character # (hash) at the beginning of the first line

means that the content of this line is a preprocessor

directive.

• The prefix “pre” suggests that these operations are

performed before the full processing (compilation) takes

place.

• include directive - when the preprocessor encounters

that directive, it replaces the directive with the content of

the file whose name is listed in the directive (in our case,

this is the file stdio.h).

Your first program

• The stdio.h file (defined by the standard of the “C”

language) contains a collection of preliminary information

about ready-made blocks which can be used by a

program to write text on the screen or to read letters

from the keyboard.

Your first program

• One of the most common types of blocks used to build

“C” programs is functions.

• Imagine a function as a black box, where you can insert

something into it (not always necessary) and take

something new out of it as if out of a magic hat.

• Things that are put in the box are called function

arguments (or function parameters).

• Things that are taken out of the box are called function

results.

Your first program

• The standard of the “C” language assumes that, among

the many different blocks which may be put into a

program, one specific block must always be present,

otherwise the program won't be correct. This block is

always a function of the same name: main.

• Every function in “C” begins with the following set of

information:

 what is the result of the function?

 what is the name of the function?

 how many parameters does the function have and what are

their names?

Your first program

• From int main(void) we can read:

 the result of the function is an integer value (we read it from the

word int which is short for integer)

 the name of the function is main (we know why already)

 the function doesn't require any parameters (which we read

from the word void)

• A set of information like this is called a prototype. The

prototype says nothing about what the function is

intended for. It’s written inside the function and the

interior of the function is called the function body. The

function body begins where the first opening bracket { is

placed and ends where the corresponding closing

bracket } is placed.

Your first program

• Inside the main function body we should write what our

function (and thus the program) is supposed to do. We

look inside and find a reference to a block called puts.

This is what we call a function invocation.

• Firstly, note the semicolon at the end of the line. Each

instruction (precisely: each statement) in “C” must end

with a semicolon.

• The text intended to be shown on the screen is passed

to the function as a function parameter. Remember that

the name of the invoked function must always be

followed by a pair of parentheses (and), even when the

function doesn’t expect any parameters from us.

Your first program

 puts

 (

 "It's me, your first program."

)

 ;

• In the “C” language you don’t have to write just one

statement per line. It’s possible to place two (or more)

statements on the same line, or split one statement into

several lines, but bear in mind that the readability (for

humans) is the most important factor. Compilers will

never complain about your style.

Your first program

• Besides the function invocation, this is another

statement of the “C” language. Its name is just return

and that’s exactly what it does. Used in the function, it

causes the end of the function execution.

• If you perform return somewhere inside a function, this

function immediately interrupts its execution.

Your first program

• This is important – this is how your program tells the

operating system the following message: I did what I had

to do, nothing stopped me and everything is OK. If you

were to write:

 return 1;

• it would mean that something had gone wrong, it didn’t

allow your program to be successful and the operating

system could then use that information to react in the

most appropriate way.

Outline

1. Introduction to computer programming

1. Different languages for different purposes

2. Your first program

3. Integer values, integer variables and comments

4. Quiz

Numbers and how the computers

see them

• The binary system - it’s the system computers use for

storing numbers, and that they can perform any

operation upon them.

• The numbers handled by modern computers are of two

types:

 integers, that is, those which are devoid of the fractional part;

 floating-point numbers (or simply floats), that contain (or are

able to contain) the fractional part.

• At this point we have made friends with two types of the

“C” language – an integer type (known as int) and a

floating point type (known as float).

Numbers and how the computers

see them

• We would write the number like this:

 11,111,111

• or like this:

 11.111.111

• or even like this:

 11 111 111

• However, in “C” it’s prohibited. You must write this

number as follows:

 11111111

Numbers and how the computers

see them

• Positive numbers don't need to be preceded by the plus

sign but you can do it if you want. The following lines

describe the same number:

 +123

 123

Numbers and how the computers

see them

• There are two additional conventions, unknown to the

world of mathematics. If an integer number is preceded

by the 0 digit, it will be treated as an octal value. This

means that the number must contain digits taken from

the [0..7] range only.

 0123

• is an octal number with a decimal value equal to 83.

• The second allows us to use hexadecimal numbers. This

type of number should be preceded by a prefix written as

0x or 0X.

 0x123

• is a hexadecimal number with a decimal value equal to

291.

Numbers and how the computers

see them

• To print an integer number, you should use (this is only a

simple form):

 printf("%d\n", IntegerNumberOrExpression);

• To print a floating point number, you should use (this is

only a simple form):

 printf("%f\n", FloatNumberOrExpression);

• In both cases, you should first include the stdio header

file (as we did in the first program):

 #include <stdio.h>

A variable is variable

• How to store the results of arithmetic operations in order

to use them in other operations.

• There are special “containers” for this purpose and

these containers are called variables.

• What does every variable have?

 a name

 a type

 a value

A variable is variable

• If you want to give a name to a variable you must follow

some strict rules:

 the name of the variable must be composed of upper-case or

lower-case Latin letters, digits and the character _

(underscore);

 the name of the variable must begin with a letter

 the underline character is a letter (strange but true)

 upper- and lower-case letters are treated as different (a little

differently than in the real world – Alice and ALICE are the same

given names but they are two different variable names,

consequently, two different variables)

A variable is variable

• The type is an attribute that uniquely defines which

values can be stored inside the variable.

 integer (int) and floating point (float) types

• The variable comes into existence as a result of a

declaration.

• A declaration is a syntactic structure that binds a name,

provided by the programmer, to a specific type offered by

the “C” language.

• The construction of the declaration (in other words – the

declaration syntax) is simple:

 just use the name of the desired type, then the variable name (or

variable names separated by commas if there are more than

one).

A variable is variable

• We can declare a variable of type int named Counter.

The relevant portion of the program looks like this:

 int Counter;

• What is declared by the following fragment of a

program?

 int variable1, account_balance, invoices;

• It declares three variables of type int named

(respectively) variable1, account_balance and invoices.

A variable is variable

• And how do we give a value to the newly declared

variable? You need to use the assignment operator.

• The assignment operator looks very familiar – here it is:

 =

• Let's look at some examples:

 Counter = 1;

• Another example:

 Result = 100 + 200;

• And now a slightly more difficult example:

 x = x + 1;

Keywords – why they are the keys?

Keywords – why they are the keys?

• For example – you can't do this:

 int int;

• You mustn't have a variable named int – it’s prohibited.

But you can do this instead:

 int Int;

Comments on the comments

• The developer may want to put in a few words

addressed not to the compiler but to humans, usually to

explain to other readers of the code how the tricks used

in the code work, or the meanings of variables and

functions and eventually, in order to keep stored

information on who the author is and when the program

was written.

• In the “C” language a comment is a text that begins with

the pair of characters

 /*

• and ends with the pair of characters

 */

• The comment can span several lines

Comments on the comments

Comments on the comments

Comments on the comments

• The question is: is the declaration of variable k a

comment or not?

Outline

1. Introduction to computer programming

1. Different languages for different purposes

2. Your first program

3. Integer values, integer variables and comments

4. Quiz

Quiz

Quiz

Quiz

Quiz

Quiz

Quiz

Quiz

Quiz

Quiz

Quiz

