
Maciej Sobieraj

Lecture 2



Outline

1. Data types, their operations and basics of 

flow control

1. Floating-point numbers

2. Computer arithmetic and arithmetic operators

3. Characters as another kind of data

4. Controlling the flow – absolute basics

5. Quiz 



Floating-point numbers

• Floating-point numbers in real life and in the 

“C” language

• Floating-point numbers are designed to 

represent and to store numbers that (as a 

mathematician would say) have a non-empty 

decimal fraction

• They’re the numbers that have (or may have) a 

fractional part after the decimal point



Floating-point numbers

• “Two and a half” looks normal when you write it 

in a program, although if your native language 

prefers to use a comma instead of a point in the 

number, you should ensure that your number 

doesn’t contain any commas. The compiler won’t 

accept it, or (in very rare but possible cases) will 

misunderstand your intentions, as the comma 

itself has its own reserved meaning in the “C” 

language.



Floating-point numbers

• As you can probably imagine, the value of “zero 

point four” could be written in “C” as:

 0.4

• Don't forget this simple rule: you can omit zero 

when it’s the only digit in front of or after the 

decimal point. In essence, you can write the 

value 0.4 as shown on the right.



Floating-point numbers

• For example: the value of 4.0 could be written 

as 4. without changing its type or value.

• Note: the decimal point is essential in 

recognizing floating-point numbers in “C”. Look 

at these two numbers:

4

4.0



Floating-point numbers

• For you, they might be exactly the same, but the 

“C” compiler sees these two numbers in a 

completely different way. 

4 is an int. 

4.0 is a double (can be easily assigned to

float). 

We can say that the point makes a double. 

Don't forget that.



Floating-point numbers

• When you want to use any numbers that are 

very large or very small, you can use scientific 

notation.

• Written directly it would look like this:

 300000000

• To avoid tediously writing so many zeros, 

physics textbooks use an abbreviated form, 

which you have probably already seen:

 3 • 10^8 



Floating-point numbers

• In the “C” language, the same effect is achieved 

in a slightly different form – take a look:

 3E8

• The letter E (you can also use the lower case letter e – it 

comes from the word exponent) is a concise version of 

the phrase “times ten to the power of”.

• Note:

 the exponent (the value after the “E”) 

has to be an integer.

 the base (the value in front of the “E”) 

may or may not be an integer.



Floating-point numbers

• A physical constant called Planck's constant

(and denoted as h) has, according to the 

textbooks, the value of:

6.62607 x 10-34

If you would like to use it in a program, you 

would write it this way:

6.62607E-34



Floating-point numbers

• The declaration of float variable is done by using 

the keyword float.



Floating-point numbers

• Difference between int and float is very 

significant in terms of semantics



Floating-point numbers

• The transformation from type int into float is 

always possible and feasible, but in some cases 

can cause a loss of accuracy.



Floating-point numbers

• We can observe a loss of accuracy when we 

want convert float to int.

• There’s another aspect of the operation: 

converting a float into an int is not always 

feasible. Integer variables (like floats) have a 

limited capacity. 



Floating-point numbers

• if a certain type of computer uses four bytes (i.e. 

32 bits) to store int values, you’re only able to 

use the numbers from the range of -

2147483648..2147483647.



Floating-point numbers

• The i variable is unable to store such a large 

value, but it isn’t clear what will happen during 

the assignment. 

• Certainly, a loss of accuracy will occur, but the 

value assigned to the variable i is not known in 

advance.



Floating-point numbers

• In some systems, it may be the maximum 

permissible int value, while in others an error 

occurs.

• This is what we call an implementation 

dependent issue.



Outline

1. Data types, their operations and basics of 

flow control

1. Floating-point numbers

2. Computer arithmetic and arithmetic operators

3. Characters as another kind of data

4. Controlling the flow – absolute basics

5. Quiz 



Operators

• An operator is a symbol of the programming 

language which is able to operate on the 

values.

• We’ll begin with the operators associated with 

widely recognizable arithmetic operations.



Multiplication

• An asterisk (“*”) is a multiplication operator.



Division

• A slash (“/”) is a divisional operator. The value 

in front of the slash is a dividend, the value 

behind the slash, a divisor.



Division by zero

• As you’ve probably guessed, division by zero is 

strictly forbidden.

• In the following example, the compiler won't tell 

you anything, but when you try to execute the 

code it may terminate abnormally and produce 

unreliable results.



Addition

• The addition operator is the “+” (plus) sign, 

which is one that we already know from 

mathematics.



Subtraction

• The subtraction operator is obviously the “-“ 

(minus) sign, although you should note that this 

operator also has another meaning – it can 

change the sign of a number.

• This is a great opportunity to show you a very 

important distinction between unary and binary

operators



Unary minus

• In “subtracting” applications, the minus operator 

expects two arguments: the left (a minuend in 

arithmetic terms) and the right (a subtrahend). 

For this reason, the subtraction operator is 

considered one of the binary operators, just like 

the addition, multiplication and division 

operators.

• We used the minus operator as a unary

operator.



Unary plus

• he same dual nature is expressed by the “+” 

operator, which can be also used as a unary 

operator – its role is to preserve the sign.



Remainder

• This is quite a peculiar operator, because it has 

no equivalent among traditional arithmetic 

operators. Its graphical representation in the “C” 

language is the “%” (percent) character.



Priorities

• The “C” language precisely defines the 

priorities of all operators and assumes that 

operators of a larger (higher) priority perform 

their operations before the operators with a 

lower priority. So, if we know that “*” has a 

higher priority than “+”, the computation of the 

final result is pretty obvious.



Bindings

• The binding of the operator determines the 

order of the computations performed by some 

operators with equal priority, put side by side in 

one expression.

• Most operators in the “C” language have the 

left-sided binding, which means that the 

calculation of the expression shown here is 

conducted from left to right.



List of priorities



List of priorities

• Both operators (“*” and “%”) have the same 

priority.



Parentheses

• We’re always allowed to use parentheses, 

which can change the natural order of 

calculation



Parentheses

• We’re always allowed to use parentheses, 

which can change the natural order of 

calculation



Operators continued

• There are some operators in the “C” language 

which you won’t find in the mathematics 

textbooks.

• Let's consider the following snippet:

 int SheepCounter;

 SheepCounter = 0;



Operators continued

• Every time a sheep runs through our thoughts 

we want the variable to be incremented, like this:

 SheepCounter = SheepCounter + 1;

• Similar operations appear very frequently in 

typical programs so the creators of the “C “ 

language introduced a set of special operators 

for them. One is the + + (plus plus) operator.

You can achieve the same effect in a shorter 

way:

 SheepCounter++;



Operators continued

• Similarly, you can also decrease the value of a 

chosen variable. For example, if we can’t wait for 

the holidays, our mind does the following 

operation every morning:

 DaysUntilHoliday = DaysUntilHoliday - 1;

• We can write it in a more compact way:

 DaysUntilHoliday--;



Operators continued

• Sorry, but now we have to introduce a few new 

words.

 The “++” is called the increment operator.

 The “--” is called the decrement operator.

• However, both operators can be placed in front 

of a variable as well (as prefix operators), like 

this:

 ++SheepCounter;

 --DaysUntilHoliday;



Pre-and post-operators and their 

priorities

• Operation:

 ++Variable

 --Variable 

• Effect:

 Increment/decrement the variable by 1 and return its 

value already increased/reduced.



Pre-and post-operators and their 

priorities

• Operation:

 Variable++

 Variable--

• Effect:

 Return the original (unchanged) variable's value and 

then increment/decrement the variable by 1.



Pre-and post-operators and their 

priorities



Pre-and post-operators and their 

priorities

• First, the variable i is set to 1. In the second 

statement, we’ll see the following steps:

 the value of i will be taken (as we use the post-

incrementation);

 the variable i will be increased by 1.

• In effect, j will receive the value of 1 and i the 

value of 2.



Pre-and post-operators and their 

priorities



Pre-and post-operators and their 

priorities

• The variable i is assigned with the value of 1; 

next, the i variable is incremented and is equal 

to 2; next, the increased value is assigned to the 

j variable.

• In effect, both i and j will be equal to 2.



Pre- and post- operators



Pre- and post- operators

• Look carefully at this program. Let’s trace its 

execution step by step.

 The i variable is assigned the value of 4;

 We take the original value of i (4), multiply it by 2, 

assign the result (8) to j and eventually (post-

)increment the i variable (it equals 5 now);

 We (pre-)decrement the value of j (it equals 7 now); 

this reduced value is taken and multiplied by 2 and 

the result (14) is assigned to the variable i.



Pre-and post-operators and their 

priorities



Shortcut operators



Shortcut operators

• If op is a two-argument operator (this is a very 

important condition!) and the operator is used in 

the following context:

 variable = variable op expression;

• then this expression can be simplified as 

follows:

 variable op = expression;



Shortcut operators



Outline

1. Data types, their operations and basics of 

flow control

1. Floating-point numbers

2. Computer arithmetic and arithmetic operators

3. Characters as another kind of data

4. Controlling the flow – absolute basics

5. Quiz 



Character type

• We can define a “word” as a string of 

characters (letters, numbers, punctuation 

marks, etc.)

• We dealt with these strings during the first 

lesson when we used the puts function to write 

some text on the computer screen.

• The problem with processing strings, though, will 

come back to haunt us when we start working on 

arrays, because in the “C” language all strings 

are treated as arrays.



Character type

• To store and manipulate characters, the “C” 

language provides a special type of data. This 

type is called a char, which is an abbreviation of 

the word “character”.



ASCII code

• Computers store characters as numbers. 

• Every character used by a computer 

corresponds to a unique number, and vice 

versa.

• Many of them are invisible to humans but 

essential for computers. Some of these 

characters are called white spaces, while 

others are named control characters, because 

their purpose is to control the input/output 

devices.



ASCII code

• This has created a need to introduce a universal 

and widely accepted standard implemented by 

(almost) all computers and operating systems all 

over the world. ASCII (which is a short for 

American Standard Code for Information 

Interchange) is the most widely used system in 

the world, and it’s safe to assume that nearly all 

modern devices (like computers, printers, mobile 

phones, tablets, etc.) use this code.



ASCII code



ASCII code



ASCII code

• Do you see what the code of the most common 

character is – the space? Yes – it’s 32. 

• Now look at what the code of the lower-case 

letter “a” is. It’s 97, right? 

• And now let's find the upper-case “A”. Its code is 

65. 

• What’s the difference between the code of “a” 

and “A”? 

 It’s 32. Yes, that's the code of a space.



Character type values

• The first way allows us to specify the character 

itself, but enclosed in single quotes

(apostrophes).



Character type values

• You’re not allowed to omit apostrophes under 

any circumstances.



Character type values

• The second method consists of assigning a non-

negative integer value that is the code of the 

desired character.



Literal

• The literal is a symbol which uniquely identifies 

its value.
 Character: this is not a literal; it’s probably a variable name; 

when you look at it, you cannot guess what value is currently 

assigned to that variable;

 'A': this is a literal; when you look at it you can immediately 

guess its value; you even know that it’s a literal of the char type;

 100: this is a literal, too (of the int type);

 100.0: this is another literal, this time of a floating point type;

 i + 100: this is a combination of a variable and a literal joined 

together with the + operator; this structure is called an 

expression.



Character literals

• The “C” language uses a special convention 

which also extends to other characters, not only 

to apostrophes.

• The \ character (called backslash) acts as an 

escape character, because by using the \ we 

can escape from the normal meaning of the 

character that follows the slash.



Character literals

• You can also use the escape character to 

escape from the escape character. 



Escape characters

• The “C” language allows us to escape in other 

circumstances too.

• \n – denotes a transition to a new line and is 

sometimes called an LF (Line Feed), as printers 

react to this character by pulling out the paper by 

one line of text.



Escape characters

• \r – denotes the return to the beginning of the 

line and is sometimes called a CR (Carriage 

Return – “carriage” was the synonym of a “print 

head” in the typewriter era); printers respond to 

this character as if they are told to re-start 

printing from the left margin of the already 

printed line.



Escape characters

• \0 (note: the character after the backslash is a 

zero, not the letter O): called nul (from the Latin 

word nullus – none) is a character that does 

not represent any character;



Escape characters

• Now we’ll try to escape in a slightly different 

direction. The first example explains the variant 

when a backslash is followed by two or three 

octal digits (the digits from the range of 0 to 7).



Escape characters

• The second escape refers to the situation when 

a \ is followed by the letter X (lower case or 

upper case – it doesn't matter). In this case 

there must be either one or two hexadecimal 

digits, which will be treated as ASCII code.



Char values are int values

• There’s an assumption in the “C” language that 

may seem surprising at first glance: the char

type is treated as a special kind of int type. This 

means that:

 You can always assign a char value to an int

variable;

 You can always assign an int value to a char

variable, but if the value exceeds 255 (the top-most 

character code in ASCII), you must expect a loss of 

value;

 The value of the char type can be subject to the same 

operators as the data of type int.



Char values are int values



Char values are int values



Outline

1. Data types, their operations and basics of 

flow control

1. Floating-point numbers

2. Computer arithmetic and arithmetic operators

3. Characters as another kind of data

4. Controlling the flow – absolute basics

5. Quiz 



One who asks does not err

• Computers know only two kinds of answer: yes, 

this is true or no, this is false.

• You will never get a response like “I don’t know” 

or “Probably yes, but I don’t know for sure”.

• To ask questions, the “C” language uses a set of 

very special operators. 



Question: is x equal to y?

• Question: are two values equal?

 To ask this question you use the == (equal equal)

operator.

• Don't forget this important distinction:

 = is an assignment operator

 == is the question “are these values equal?”

 == is a binary operator with left-side binding. It needs 

two arguments and checks if they’re equal.



Is x equal to y?



Is x equal to y?

• Note that we can’t know the answer if we don’t 

know what value is currently stored in the 

variable i.

• If the variable has been changed many times 

during the execution of your program, the 

answer to this question can be given only by the 

computer and only at runtime.



Is x equal to y?

• Due to the low priority of the == operator, this 

question shall be treated as equivalent to this 

one:

 BlackSheepCounter == (2 * WhiteSheepCounter)



Question: is x not equal to y?

• To ask this question, we use the != 

(exclamation equal). 



Question: is x greater than y?

• You can ask this question by using the > 

(greater than) operator. 



Question: is x greater than y?

• The “greater than” operator has another 

special, non-strict variant, but it’s denoted 

differently in classical arithmetic notation: >= 

(greater than or equal).



Question: is x less than (or equal 

to) y?

• As you’ve probably already guessed, the 

operators we use in this case are: the < (less 

than) operator and its non-strict sibling <= (less 

than or equal). 



How to use the answer we got?

• What can we do with the answer we get from the 

computer? There are at least two possibilities: 

first, we can memorize it (store it in a variable) 

and make use of it later. 



The priority table – an update.



Conditions and conditional

executions

• We must have a mechanism which allows us to 

do something if a condition is met and not to do 

it if it isn’t.

• To make these decisions, the “C” language has 

a special instruction. Due to its nature and its 

application, it’s called a conditional instruction

(or conditional statement).



Conditions and conditional

executions

• This conditional statement consists of the following, 

strictly necessary, elements in this and this order only:

 if keyword;

 left (opening) parenthesis;

 an expression (a question or an answer) whose value will be 

interpreted solely in terms of “true” (when its value is non-zero) 

and “false” (when it is equal to zero);

 right (closing) parenthesis;

 an instruction (only one, but we’ll learn how to deal with that 

limitation).



Conditions and conditional

executions

• How does this statement work?

 if the true_or_not expression enclosed inside the parentheses 

represents the truth (i.e. its value is not equal to zero), the 

statement behind this condition (do_this_if_true) will be 

executed;

 if the true_or_not expression represents a falsehood (its value 

is equal to zero), the statement behind this condition is omitted

and the next executed instruction will be the one that lies after 

the conditional statement.



Conditions and conditional

executions



Conditions and conditional

executions



Outline

1. Data types, their operations and basics of 

flow control

1. Floating-point numbers

2. Computer arithmetic and arithmetic operators

3. Characters as another kind of data

4. Controlling the flow – absolute basics

5. Quiz 



Quiz



Quiz



Quiz



Quiz



Quiz



Quiz



Quiz


