
Maciej Sobieraj

Lecture 4

Outline

1. Flow control (continued), more data types and

computer logic

1. Loops

2. Computer logic

2. Aggregating data into arrays

1. switch - the different face of ‘if’

2. Vectors: why do you need them?

3. Quiz

The “while” loop

• We want to ask you a strange question: how

long do you usually take to wash your hands?

Don’t think about it, just answer. Well, when your

hands are very dirty, you wash them for a very

long time.

The “while” loop

• We use the word “while” instead of “if”. The

semantic difference, however, is more

important: when the condition is met, if

performs its statement once; while repeats the

execution as long as the condition evaluates to

“true”

The “while” loop

• Let’s make a few observations:

 if you want while to execute more than one

statement, you must use a block

 an instruction or instructions executed inside the loop

are called the loop's body;

 if the condition is “false” (equal to zero) as early as

when it’s tested for the first time, the body is not

executed even once;

 the body should be able to change the condition

value, because if the condition is true at the

beginning, the body might run continuously to

infinity.

The “while” loop

The “while” loop

• Here’s an example of a loop that can’t finish its

execution.

The “while” loop

• We can declare the variable and assign the

value at the same time.

• The part of the declaration placed on the right

side of the = sign is called an initiator.

The “while” loop

The “while” loop in some examples

The “while” loop in some examples

• These two forms are equivalent

• Also these

The “while” loop in some examples

• There are two things that can be written more

compactly.

 First, the condition of the while loop.

The “while” loop in some examples

• Another change requires some knowledge of

how the post-decrement works.

The “while” loop in some examples

• This is the simplest form of the program

The “do” loop, or do it at least once

• The while loop has two important features:

 it checks the condition before entering the body;

 the body will not be entered if the condition is false.

• There’s another loop in the “C” language which

acts as a mirror image of the while loop. We say

so because in that loop:

 the condition is checked at the end of body

execution;

 the loop's body is executed at least once, even if the

condition is not met.

The “do” loop, or do it at least once

The “do” loop, or do it at least once

• Let’s go back to the program to search for the

largest number.

“for” - the last loop

• The last kind of loop available in the “C”

language comes from the observation that

sometimes it’s more important to count the

“turns” of a loop than to check the conditions.

“for” - the last loop

• We can distinguish three independent elements

here:

 initiation of the counter→red colour;

 checking the condition→green colour;

 modifying the counter→blue colour.

“for” - the last loop

• We can provide something like a generalized

scheme for these kinds of loops

“for” - the last loop

• All three decisive parts are gathered together.

The loop is clear and easy to read.

“for” - the last loop

• The variable used for counting the loop’s turns is

often called a control variable.

“for” - the last loop

• The for loop has an interesting singularity. If we

omit any of its three components, it’s presumed

that there is a 1 there instead.

 One of the consequences of this is that a loop written

in this way is an infinite loop

“for” - the last loop

• Let’s look at a short program whose task is to

write some of the first powers of 2.

break and continue – the loop's

spices

• The developer could be faced with the following

choices:

 it appears that it’s unnecessary to continue the loop

as a whole; we should refrain from executing the

loop’s body and go further;

 it appears that we need to start the condition

testing without completing the execution of the

current turn.

break and continue – the loop's

spices

• These two instructions are:

 break - exits the loop immediately and

unconditionally ends the loop’s operation; the

program begins to execute the nearest instruction

after the loop's body;

 continue – behaves as if the program has suddenly

reached the end of the body; the end of the loop’s

body is reached, the control variable is modified (in

the case of for loops), and the condition expression is

tested.

• Both these words are keywords.

break and continue – the loop's

spices

break and continue – the loop's

spices

Outline

1. Flow control (continued), more data types and

computer logic

1. Loops

2. Computer logic

2. Aggregating data into arrays

1. switch - the different face of ‘if’

2. Vectors: why do you need them?

3. Quiz

Computers and their logic

• Have you noticed that the conditions we’ve used

so far have been very simple, not to say – quite

primitive? The conditions we use in real life are

much more complex. Let's look at the sentence:

 If we have some free time, and the weather is good, we will go for a walk.

• We’ve used the conjunction “and”, which means

that going for a walk depends on the

simultaneous fulfillment of the two conditions. In

the language of logic, the connection of

conditions is called a conjunction.

Computers and their logic

• And now another example:

 If you are in the mall or I am in the mall, one

of us will buy a gift for Mom.

The appearance of the word “or” means that the

purchase depends on at least one of these

conditions. In logic terms, this is called a

disjunction.

Pride && Prejudice

• The logical conjunction operator in the “C”

language is a digraph && (ampersand

ampersand).

Pride && Prejudice

• The result provided by the && operator can be

determined on the basis of the truth table.

To be || not to be

• The disjunction operator is the digraph | | (bar

bar). It’s a binary operator with a lower priority

than &&

To be || not to be

• In addition, there’s another operator that can be

used to construct conditions. It’s a unary

operator performing a logical negation.

Some logical expressions

Some logical expressions

• You may remember De Morgan's laws from

school. They say that:

 The negation of a conjunction is the

disjunction of the negations.

 The negation of a disjunction is the

conjunction of the negations.

How to deal with single bits

• the following snippet will assign a value of 1 to

the j variable if i is not zero; otherwise, it will be 0

(why?).

How to deal with single bits

• Bitwise operators

 & (ampersand) bitwise conjunction

 | (bar) bitwise disjunction

 ~ (tilde) bitwise negation

 ^ (caret) bitwise exclusive or

• Let's make it easier:

 & requires exactly two “1s” to provide “1” as the result

 | requires at least one “1” to provide “1” as the result

 ^ requires only one “1” to provide “1” as the result

 ~ (is one argument and) requires “0” to provide “1” as

the result

How to deal with single bits

How to deal with single bits

• Let’s have a look at an example of the difference

in operation between logical and bit operations.

Let’s assume that the following declaration has

been performed:

 int i = 15, j = 22;

• If we assume that the ints are stored with 32

bits, the bitwise image of the two variables will

be as follows

How to deal with single bits

• The declaration is given:

 int log = i && j;

• We’re dealing with a logical conjunction. Let’s

trace the course of the calculations. Both

variables i and j are not zeros so will be deemed

to represent “true”.

How to deal with single bits

• Now the bitwise operation – here it is:

 int bit = i & j;

• The & operator will operate with each pair of

corresponding bits separately, producing the

values of the relevant bits of the result.

How to deal with single bits

• Let's try the negation operators now. First the

logical one:

 int logneg = !i;

• The logneg variable will be set to 0 so its image

will consist of zeros only.

The bitwise negation goes here:

 int bitneg = ~i;

How to deal with single bits

• Each of the previous two-argument operators

can be used in their abbreviated forms.

How to deal with single bits

• The variable stores information about the

various aspects of system operation. Each bit of

the variable stores one yes/no value.

• Only one of these bits is yours – bit number

three

How to deal with single bits

• You may face the following tasks:

 check the state of your bit – you want to find out the

value of your bit; comparing the whole variable to

zero will not do anything, because the remaining bits

can have completely unpredictable values, but we

can use the following conjunction property:

• x&1=x

• x&0=0

How to deal with single bits

• If we apply the & operation to the FlagRegister

variable along with the following bit image:

 00000000000000000000000000001000

• (note the "1" at your bit's position) we obtain one

of the following bit strings as a result:

 00000000000000000000000000001000 if your bit

was set to “1”

 00000000000000000000000000000000 if your bit

was reset to “0”

How to deal with single bits

• A sequence of zeros and ones whose task is to

grab the value or to change the selected bits is

called a bitmask. Let’s try to build a bitmask to

detect the state of your bit. It should point to the

third bit. That bit has the weight of 23 = 8. A

suitable mask could be created by the following

declaration:

 int TheMask = 8;

How to deal with single bits

• We can also make a sequence of instructions

depending on the state of your bit

How to deal with single bits

• You may face the following tasks:

 Reset your bit – you assign a zero to the bit while all

the other bits must remain unchanged; we’ll use the

same property of the conjunction as before, but we’ll

use a slightly different mask – exactly as below:

• 1111111111111111111111111111110111

How to deal with single bits

• You may face the following tasks:

 Set your bit – you assign a “one” to your bit while all

the remaining bits must remain unchanged; we’ll use

the following disjunction's property:

• x|1=1

• x|0=x

How to deal with single bits

• You may face the following tasks:

 Negate your bit – you replace a “one” with a “zero”

and a “zero” with a “one”. We’ll use an interesting

property of the xor operator:

• x ^ 1 = !x

• x ^ 0 = x

How to deal with single bits

• The “C” language offers yet another operation

relating to single bits: shifting.

 This is applied only to integer values and you mustn't

use floats as arguments for it.

 shifting a value one bit to the left corresponds to

multiplying it by 2;

 respectively, shifting one bit to the right is like dividing

by 2

How to deal with single bits

• Bit shifting can be:

 Logical, if all the bits of the variable are shifted;

shifting takes place when you apply it to the unsigned

integers;

 Arithmetic, if the shift omits the sign bit – in two's

complement notation, the role of the sign bit is

played by the highest bit of a variable; if it’s equal to

"1", the value is treated as a negative; this means

than the arithmetic shift cannot change the sign of the

shifted value.

How to deal with single bits

• The shift operators in the “C” language are a

pair of digraphs, << and >>, clearly suggesting

in which direction the shift will act.

How to deal with single bits

• Let’s assume the following declarations exist:

 int Signed = -8, VarS;

 unsigned Unsigned = 6, VarU;

• Take a look at these shifts:

How to deal with single bits

• Both operators can be used in the shortcut form

as below:

 Signed >>= 1; /* division by 2 */

 Unsigned <<= 1; /* multiplication by 2 */

How to deal with single bits

Outline

1. Flow control (continued), more data types and

computer logic

1. Loops

2. Computer logic

2. Aggregating data into arrays

1. switch - the different face of ‘if’

2. Vectors: why do you need them?

3. Quiz

Case and switch vs. if

• There are no obstacles to using and maintaining

code like that, but there are a few

disadvantages:

 The longer the cascade, the harder it is to read and

understand what it’s indented for.

 Amending the cascade is also hard: it's hard to add a

new branch to it and it's hard to remove any

previously created branch.

Case and switch vs. if

• But the “C” language offers a way to make

selections easier.

Case and switch vs. if

• The new instruction is called switch. So how

does it work?

 First, the value of the expression enclosed inside the

parenthesis after the switch keyword is evaluated.

 Then the block is searched in order to find a literal

preceded by the case keyword which is equal to the

value of the expression.

 When this case is found, the instructions behind the

colon are executed. If there’s a break among them,

the execution of the switch statement is terminated

Case and switch vs. if

Case and switch vs. if

• We’re allowed to place more than one case in

front of any branch

Case and switch vs. if

• We can also assume that our program does not

have an opinion when i values are different from

the ones specified so far.

• We can put default case.

Case and switch vs. if

• But now a few more important remarks to note:

 the value after the case must not be an expression

containing variables or any other entities whose

values aren't known at compilation time;

 the case branches are scanned in the same order in

which they are specified in the program; this means

that the most common selections should be placed

first (in fact, this could make your program a little

faster in some cases).

Outline

1. Flow control (continued), more data types and

computer logic

1. Loops

2. Computer logic

2. Aggregating data into arrays

1. switch - the different face of ‘if’

2. Vectors: why do you need them?

3. Quiz

Arrays – why?

• We know how declare variables that can store

exactly one given value at a time.

• Think of how convenient it would be if we could

declare a variable that can store more than one

value.

Arrays – why?

• We read this record as follows: we create a

variable called numbers; it’s intended to store

five values (note the number enclosed inside

brackets) of type int (which we know from the

keyword int at the beginning of the declaration).

• The “C” language adopted the convention that

the elements in an array are numbered starting

from 0.

Arrays – why?

• How do we assign a value to the chosen

element of the array?

Arrays – why?

• We need a value stored in the third element of

the array and we want to assign it to the variable

i.

Arrays – why?

• And now we want the value of the fifth element

to be copied to the second element

• The value inside the brackets, which selects one

element of the vector, is called an index

Arrays – why?

• We want to calculate the sum of all the values

stored in the numbers array.

Arrays – why?

• The next task is to assign the same value (e.g.

2012) to all the elements of the array.

Arrays – why?

• Now let’s try to rearrange the elements of the

array i.e. reverse the order of the elements: let’s

swap around the first and the fifth as well as the

second and fourth elements. The third one we’ll

leave untouched.

• Question: how can we swap the values of two

variables?

Arrays – why?

• Question: how can we swap the values of two

variables?

Arrays – why?

• It’s acceptable with an array of 5 elements, but

with 99 elements it certainly wouldn't work.

Arrays – why?

• Let’s employ the services of a for loop. Look

carefully at how we manipulate the values of

the indices.

Outline

1. Flow control (continued), more data types and

computer logic

1. Loops

2. Computer logic

2. Aggregating data into arrays

1. switch - the different face of ‘if’

2. Vectors: why do you need them?

3. Quiz

Quiz

Quiz

Quiz

Quiz

Quiz

Quiz

Quiz

Quiz

