Maciej Sobieraj

Lecture 4

I | Outline

1. Flow control (continued), more data types and
computer logic

1. Loops {:

2. Computer logic

2. Aggregating data into arrays
1. switch - the different face of ‘if’
2. Vectors: why do you need them?

3. Quiz

I | The "while” loop

« We want to ask you a strange guestion: how
long do you usually take to wash your hands?
Don’t think about it, just answer. Well, when your

hands are very dirty, you wash them for a very
long time.

while my hands are dirty

| am washing my hands;

The "while” loop

* We use the word “while” instead of “if". The
semantic difference, however, is more
Important: when the condition is met, if
performs its statement once; while repeats the

execution as long as the condition evaluates to
“true”

while(conditional _expression)

statement;

The "while” loop

 Let's make a few observations:

= if you want while to execute more than one
statement, you must use a block

= an instruction or instructions executed inside the loop@

are called the loop's body;

= if the condition is “false” (equal to zero) as early as 2;::}
when it's tested for the first time, the body is not
executed even once; 5 o

= the body should be able to change the condition
value, because If the condition is true at the
beginning, the body might run continuously to

infinity. O X

The "while” loop

while(conditional _expression) {
statement_1,;
statement_2;

statement_n;

The "while” loop

* Here's an example of a loop that can't finish its
execution.

while(1) {

printf("l am stuck inside a loop");

I | The “while” loop

 We can declare the variable and assign the
value at the same time.

int variable = 0;

« The part of the declaration placed on the right
side of the = sign is called an initiator.

float PI = 3.1415:
double P12 = 2.0 * PI;

The "while” loop

Hinclude <stdio.h>

int main(void) {
/* temporary storage for the incoming numbers */
int number;

/* we will store the currently greatest number here */
int max = -100000;

/* get the first value */
scanf("%d",&number);

/* if the number is not equal to -1 we will continue */
while(number !=-1) {

/* is the number greater than max? */
if(number > max)
/* yes — update max */

o

max = number;

/* get next number */
scanf("%d",&number);

}

/* print the largest number */
printf("The largest number is %d \n",max);

/* finish the program successfully */
return O;

The "while” loop in some examples

/* program reads a sequence of numbers and counts how many numbers
are even and how many odd;
program terminates when a zero is entered */

#finclude <stdio.h>

int main(void) {

/* we will count the numbers here */

int Evens = 0, Odds = 0;

/* we will store the incoming numbers here */

int Number; o

/* read first number */
scanf("%d",&Number);

/* 0 terminates execution */
while(Number !=0) {
/* check if the number is odd */
if(Number % 2)
/* increase ,,odd” counter */
Odds++;
else
/* increase ,,even” counter */
Evens++;
/* read next number */
scanf("%d",&Number);
}
/* print results */
printf("Even numbers: %d\n",Evens);
printf("Odd numbers: %d\n",0dds);
return O;

I |The “while” loop In some examples

* These two forms are equivalent

while(Number !=0) { ... }

while(Number) { ... }

* Also these
if(Number % 2 == 1) ...

if(Number % 2) ...

The "while” loop in some examples

There are two things that can be written more
compactly.
= First, the condition of the while loop.

#include <stdio.h>

int main(void) {
int counter = 5;

while(counter !=0) {
puts("l am an awesome program");
counter--;

}

return O;

}

The "while” loop in some examples

Another change requires some knowledge of
how the post-decrement works.

#include <stdio.h>

int main(void) {
int counter = 5;

while(counter) {
puts("l am an awesome program");
counter--;

}

return O;

}

The "while” loop in some examples

* This Is the simplest form of the program

#include <stdio.h>

int main(void) {
int counter = 5;

while(counter--)
puts("l am an awesome program");
return O;

}

I |The “‘do” loop, or do it at least once

« The while loop has two important features:
= it checks the condition before entering the body;
= the body will not be entered if the condition is false. {:

* There’s another loop in the "C” language which “
acts as a mirror image of the while loop. We s
so because In that loop: a@

* the condition is checked at the end of body
execution;

= the loop's body Is executed at |least once, even
condition is not met.

I |The “‘do” loop, or do it at least once

do
statement;
while(condition);

do {
statement_1;
statement_2;

statement n;
} while(condition);

I |The “‘do” loop, or do it at least once

» Let's go back to the program to search for the
largest number.

#include <stdio.h>

int main(void) {
int number;
int max = -100000;
int counter = 0;

do{
scanf("%d", &number);
if(number !=-1)
counter++;
iflnumber > max|
max = number;
twhile (number |=-1);
if(counter)
printf("The largest number is %d \n",max);
else
printf{"Are you kidding? You haven't entered any number!");
return 0;

I | “for” - the last loop

* The last kind of loop available in the “C”
language comes from the observation that
sometimes it's more important to count the
“turns” of a loop than to check the conditions!

“for” - the last loop

« We can distinguish three independent elements
here:
= initiation of the counter—red colour;
= checking the condition— ;
= modifying the counter—blue colour.
inti;
1=0;

while () {
/* the body goes here

*/

i++;

I | “for” - the last loop

* We can provide something like a generalized
scheme for these kinds of loops

initialization;
while () {
/* the body goes
here */
modifying;

I | “for” - the last loop

 All three decisive parts are gathered together.
The loop Is clear and easy to read.

for(i=0:;: i++) {
/* the body goes here */

I | “for” - the last loop

* The variable used for counting the loop’s turns is
often called a control variable.

for(i=0:;: i++) {
/* the body goes here */

I | “for” - the last loop

* The for loop has an interesting singularity. If we
omit any of its three components, it's presumed
that there is a 1 there instead. {:

= One of the consequences of this is that a loop written®
In this way is an infinite loop

for(;;){
/* the body goes here */
}

“for” - the last loop

* Let’s look at a short program whose task is to
write some of the first powers of 2.

#include <stdio.h>

int main(void) {
int exp;
int pow = 1;

for(exp = 0; exp < 16; exp++) {

printf("2 to the power of %d is %d\n",exp,pow);
pow "= 2;

}

return 0;

}

I | break and continue — the loop's
spices

* The developer could be faced with the following
choices:

= it appears that it's unnecessary to continue the loop {:
as a whole; we should refrain from executing the O
loop’s body and go further;

= it appears that we need to start the condition
testing without completing the execution of the
current turn.

I | break and continue — the loop's
spices

 These two Instructions are:

= pbreak - exits the loop immediately and
unconditionally ends the loop’s operation; the {:
program begins to execute the nearest instruction o

after the loop's body;

= continue — behaves as if the program has suddenly{;j}
reached the end of the body; the end of the loop’
body Is reached, the control variable is modified (in o
the case of for loops), and the condition expression |

tested.
« Both these words are keywords.

break and continue — the loop's
spices

#include <stdio.h>

int main(void) {
int number;
int max = -100000;
int counter = 0;

for(;; |
scanf("%d",&number);
if(number == -1)
break;
counter++;
if(humber > max)
max = number;
}
if(counter)
printf("The largest number is %d \n",max);
else
printf("Are you kidding? You haven't entered any number!");
return 0;

break and continue — the loop's
spices

#include <stdio.h>

int main(void) {
int number;
int max = -100000;
int counter = 0;

do {
scanf("%d",&number);
if(number == -1)
continue;
counter++;
if(humber > max)
max = number;
} while (number !=-1);
if(counter)
printf("The largest number is %d\n",max);
else
printf("Are you kidding? You haven't entered any number!");
return O;

}

I | Outline

1. Flow control (continued), more data types and
computer logic

1. Loops {:

2. Computer logic

2. Aggregating data into arrays
1. switch - the different face of ‘if’
2. Vectors: why do you need them?

3. Quiz

I | Computers and their logic

« Have you noticed that the conditions we’ve used
so far have been very simple, not to say — quite
primitive? The conditions we use in real life are
much more complex. Let's look at the sentence:

If we have some free time, and the weather is good, we will go for a walk.

« We’ve used the conjunction “and”, which mearns
that going for a walk depends on the
simultaneous fulfillment of the two conditionS. In
the language of logic, the connection of It
conditions is called a conjunction.

I | Computers and their logic

* And now another example:

If you are in the mall or | am in the mall, one
of us will buy a gift for Mom.

The appearance of the word “or” means that the
purchase depends on at least one of these
conditions. In logic terms, this is called a
disjunction.

I | Pride && Prejudice

* The logical conjunction operator in the “C”
language is a digraph && (ampersand
ampersand).

Counter > 0 && Value == 100

TV ol a B AR /N I /N

I | Pride && Prejudice

* The result provided by the && operator can be
determined on the basis of the truth table.

To be || not to be

* The disjunction operator is the digraph | | (bar
bar). It's a binary operator with a lower priority
than &&

I | To be || not to be

 |n addition, there’s another operator that can be
used to construct conditions. It's a unary
operator performing a logical negation. C

false true

true false

Some logical expressions

Variable > 0 '(Variable <= 0)
Variable =0 '(Variable == 0)

I | Some logical expressions

* You may remember De Morgan's laws from
school. They say that:

The negation of a conjunction is the
disjunction of the negations.

The negation of a disjunction is the
conjunction of the negations.

(p&&q)==Ip || g

(pllq)=='p&&lq

I | How to deal with single bits

* the following snippet will assign a value of 1 to
the | variable if I Is not zero; otherwise, it will be O
(why?).

intij;

j="h;

I | How to deal with single bits

* Bitwise operators
= & (ampersand) bitwise conjunction

= | (bar) bitwise disjunction {:
= ~ (tilde) bitwise negation ©
= N (caret) bitwise exclusive or

 Let's make it easier: 2.\::}

= & requires exactly two “1s” to provide “1” as the resulb
= | requires at least one “1” to provide “1” as the S8y
= A requires only one “1” to provide “1” as the resulg
= ~ (is one argument and) requires “0” to provide °

the result o \

How to deal with single bits

I | How to deal with single bits

* Let's have a look at an example of the difference
In operation between logical and bit operations.
Let's assume that the following declaration has
been performed:

= inti=15,j=22;

* If we assume that the ints are stored with 32

nits, the bitwise image of the two variables will

ne as follows

I: 00000000000000000000000000001111
J: 00000000000000000000000000010110

I | How to deal with single bits

* The declaration is given:
" intlog =1&&|;

* We're dealing with a logical conjunction. Let's
trace the course of the calculations. Both
variables i and j are not zeros so will be deemed
to represent “true”.

log: 00000000000000000000000000000001

I | How to deal with single bits

* Now the bitwise operation — here 1t Is:
" intbit=1&];
* The & operator will operate with each pair of

corresponding bits separately, producing the
values of the relevant bits of the resuilt.

bit: 00000000000000000000000000000110

How to deal with single bits

 Let's try the negation operators now. First the
logical one:
= int logneg = Ii;

* The logneg variable will be set to 0 so its image

will consist of zeros only.
The bitwise negation goes here:

= int bitheg = ~I;
logneg: 00000000000000000000000000000000

bitneg: 11111111111111111111111111110000

I | How to deal with single bits

« Each of the previous two-argument operators
can be used in their abbreviated forms.

I | How to deal with single bits

* The variable stores information about the
various aspects of system operation. Each bit of
the variable stores one yes/no value.

int FlagRegister;

FlagRegister: 0000000000000000000000000000x000

 Only one of these bits Is yours — bit number >
three

How to deal with single bits

* You may face the following tasks:

= check the state of your bit — you want to find out the
value of your bit; comparing the whole variable to {:
zero will not do anything, because the remaining bits o
can have completely unpredictable values, but we
can use the following conjunction property: {:}
* X&1=X
* x&0=0 o

I | How to deal with single bits

 If we apply the & operation to the FlagRegister
variable along with the following bit image:

= 00000000000000000000000000001000 C

* (note the "1" at your bit's position) we obtain one’

of the following bit strings as a result: {:}

= 00000000000000000000000000001000 if your bit
was set to “1” o

= 00000000000000000000000000000000 if your Bit
was reset to “0”

I | How to deal with single bits

* A sequence of zeros and ones whose task is to
grab the value or to change the selected bits is
called a bitmask. Let’s try to build a bitmask to
detect the state of your bit. It should point to thé
third bit. That bit has the weight of 23 = 8. A
suitable mask could be created by the following
declaration:

= Int TheMask = 8;

I | How to deal with single bits

* We can also make a sequence of instructions
depending on the state of your bit

if(FlagRegister & TheMask) {
/* my bit is set */

} else {
/* my bit is reset */

How to deal with single bits

* You may face the following tasks:

= Reset your bit — you assign a zero to the bit while all
the other bits must remain unchanged; we’ll use the {:
same property of the conjunction as before, but we’ll o
use a slightly different mask — exactly as below:
e 1111111111111111111111111111110111

FlagRegister = FlagRegister & ~“TheMask;

FlagRegister &= ~TheMask;

How to deal with single bits

* You may face the following tasks:

= Set your bit — you assign a “one” to your bit while all
the remaining bits must remain unchanged; we’'ll use {:
the following disjunction’'s property: (o)
e X|1=1
* X|0=x

FlagRegister = FlagRegister | TheMask;

FlagRegister |= TheMask;

How to deal with single bits

* You may face the following tasks:

= Negate your bit — you replace a “one” with a “zero”
and a “zero” with a “one”. We'll use an interesting {:
property of the xor operator:
e XNl =1IXx
e X0 =X

o

FlagRegister = FlagRegister * TheMask;

FlagRegister = TheMask;

I | How to deal with single bits

* The “C” language offers yet another operation
relating to single bits: shifting.

*= This is applied only to integer values and you mustn't {:
use floats as arguments for it.

= shifting a value one bit to the left corresponds to
multiplying it by 2; g}
n

= respectively, shifting one bit to the right is like dividi
by 2

I | How to deal with single bits

* Bit shifting can be:

= Logical, if all the bits of the variable are shifted,;
shifting takes place when you apply it to the unsigned {:
Integers;

= Arithmetic, if the shift omits the sign bit —in two's
complement notation, the role of the sign bit is 2;:}
played by the highest bit of a variable; if it's equal t
"1", the value Is treated as a negative; this means
than the arithmetic shift cannot change the sign ©f th
shifted value.

I | How to deal with single bits

* The shift operators in the “C” language are a
pair of digraphs, << and >>, clearly suggesting
In which direction the shift will act.

Value << Bits

Value >> Bits

How to deal with single bits

« Let’'s assume the following declarations exist:
= int Sighed = -8, VarsS;
= unsigned Unsigned = 6, VarU; {:
» Take a look at these shifts:

/* equivalent to division by 2 —> VarS == -4 */
VarS = Signed >> 1;

o

/* equivalent to multiplication by 4 —> VarS == -32 */
VarS = Signed << 2;

/* equivalent to division by 4 —> VarU == 1 */
VarU = Unsigned >> 2;

/* equivalent to multiplication by 2 —> VarU == 12 */
VarU = Unsigned << 1;

I | How to deal with single bits

* Both operators can be used in the shortcut form
as below:

= Signed >>=1; /* division by 2 */
» Unsigned <<= 1; /* multiplication by 2 */

How to deal with single bits

IS (typelEEEstiE

* /%

&&

= 4= -= *= /: %= &= "= |: Sh= L=

I | Outline

1. Flow control (continued), more data types and
computer logic

1. Loops {:

2. Computer logic

2. Aggregating data into arrays
1. switch - the different face of ‘if’
2. Vectors: why do you need them?

3. Quiz

I | Case and switch vs. If

« There are no obstacles to using and maintaining
code like that, but there are a few
disadvantages: {:

= The longer the cascade, the harder it is to read and ©
understand what it's indented for.

= Amending the cascade is also hard: it's hard to add%:}
new branch to it and it's hard to remove any
previously created branch.

| Case and switch vs. If

if(i==1)

puts("Only one?");
else if(i == 2)

puts("l want more");
else if(i == 3)

puts("Not bad");
else

puts("OK");

« But the “C” language offers a way to make
selections easier.

I | Case and switch vs. If

* The new Instruction is called switch. So how
does it work?

= First, the value of the expression enclosed inside the ‘{:
parenthesis after the switch keyword is evaluated. ©O

= Then the block is searched in order to find a literal
preceded by the case keyword which is equal to th{:}l
value of the expression.

= When this case is found, the instructions behindthe o
colon are executed. If there’s a break among the
the execution of the switch statement Is terminatgg

Case and switch vs. If

switch(i) { {:

o

case 1: puts("Only one?"); break;
case 2: puts("l want more"); break;
case 3: puts("Not bad"); break;
case 4: puts("OK");

Case and switch vs. If

* We're allowed to place more than one case In
front of any branch

o

switch(i) {
case 1: puts("Only one?"); break;
case 2: puts("l want more"); break;
case 3.
case 4: puts("OK");

Case and switch vs. If

* We can also assume that our program does not
have an opinion when i values are different from

the ones specified so far. C
0

* We can put default case.

switch(i) {
case 1: puts("Only one?"); break;
case 2: puts("l want more"); break;
case 3:
case 4: puts("OK"); break;
default: puts("Don't care");

Case and switch vs. If

* But now a few more important remarks to note:

= the value after the case must not be an expression ‘{:
containing variables or any other entities whose O
values aren't known at compilation time;

* the case branches are scanned in the same order@
which they are specified in the program; this means
that the most common selections should be placed o
first (in fact, this could make your program a littl
faster in some cases).

I | Outline

1. Flow control (continued), more data types and
computer logic

1. Loops {:

2. Computer logic

2. Aggregating data into arrays
1. switch - the different face of ‘if’
2. Vectors: why do you need them?

3. Quiz

Arrays — why?

« We know how declare variables that can store
exactly one given value at a time.

int varl, var2, var3, var4, var5, var5, var/, var8, var9;

 Think of how convenient it would be if we could
declare a variable that can store more than-one
value.

Arrays — why?

int numbers|5/;

* We read this record as follows: we create a
variable called numbers; it's intended to store
five values (note the number enclosed inside
brackets) of type int (which we know from the
keyword Int at the beginning of the declaration).

* The “C” language adopted the convention th
the elements in an array are numbered star fyfE-mis
from O. o &

I | Arrays — why?

 How do we assign a value to the chosen
element of the array?

numbers|Of =111;

I | Arrays — why?

* We need a value stored in the third element of
the array and we want to assign it to the variable
.

| = numbers|2]|;

I | Arrays — why?

* And now we want the value of the fifth element
to be copied to the second element

numbers|1| = numbers|4];

 The value inside the brackets, which selects oné
element of the vector, Is called an index

Arrays — why?

 \We want to calculate the sum of all the values
stored in the numbers array.

int numbers|5], sum =0, i;

for(i=0;i<5;i++)
sum += numbers/|il;

I | Arrays — why?

* The next task is to assign the same value (e.qg.
2012) to all the elements of the array.

int i, numbers[5];

for(i=0;1<5;i++)
numbers|i| = 2012;

I | Arrays — why?

* Now let’s try to rearrange the elements of the
array i.e. reverse the order of the elements: let's
swap around the first and the fifth as well as the
second and fourth elements. The third one we’ll
leave untouched.

* Question: how can we swap the values of two
variables?

int variablel =1, variable2 = 2;

variable? = variablel;
variable1 = variable2;

Arrays — why?

* Question: how can we swap the values of two
variables?

int variablel = 1, variable2 = 2, auxiliary;
auxiliary = variablel;

variablel = variable2;
variable2 = auxiliary;

Arrays — why?

* |It's acceptable with an array of 5 elements, but
with 99 elements it certainly wouldn't work.

/* swap elements #1 and #5 */
auxiliary = numbers[0];
numbers/0] = numbers|4];
numbers|4| = auxiliary;

/* swap elements #2 and #4 */
auxiliary = numbers[1];
numbers|1] = numbers|3];
numbers|3] = auxiliary;

I | Arrays — why?

« Let’'s employ the services of a for loop. Look
carefully at how we manipulate the values of
the indices.

for(i=0;i<2;i++){
auxiliary = numbers|i];
numbers|i] = numbers|4 —i];
numbers|4 — i] = auxiliary;

}

I | Outline

1. Flow control (continued), more data types and
computer logic

1. Loops {:

2. Computer logic

2. Aggregating data into arrays
1. switch - the different face of ‘if’
2. Vectors: why do you need them?

3. Quiz

Quiz

What happens if you try to compile and run this program?

#include <stdio.h>
int main (void) {
int 1 = 1;
int 7 = 0;
while (i < 111) {
Jj++;
i *= 2;
}
printf ("%d",j);
return 0;

}
O the program outputs 7

O the program outputs 9

O the program outputs 5

Quiz

What happens if you try to compile and run this program?

¥include <stdio.h>
int main (void) {
int i = 0;
int J = 100;
for(i = 1i; J; i++)
7 /= 3:
printf("%d",i);
return 0O;

O the program outputs 3
O the program outputs 7

O the program outputs 5

Quiz

What happens if you try to compile and run this program?

#include <stdio.h>
int main (void) {
int 1,7;
for(i = 100; i <= 100; 1++)
j o= 1i;
printf("sd", J);
return 0;

}
O the program outputs 100

O the program outputs 98

O the program outputs 99

Quiz

What happens if you try to compile and run this program?

#include <stdio.h>

int main(void) {
int i = -100, j = 200;
if(1 > 0 && j < 0)

i++;

else if(i <« 0 && J < 0)
i—;

else if(i < 0 && J > 0)
J——7

else
j——1:

printf ("sd",i + j):
return 0;

}
O the program outputs 99

O the program outputs 100

O the program outputs 101

Quiz

What happens if you try to compile and run this program?

#include <stdio.h>
int main (void) {
int 1,7 = 3;
i=--3;
jo+= 11 % 2);

printf ("%d",j);
return 0;

O the program outputs 1
O the program outputs 3

O the program outputs 2

Quiz

What happens if you try to compile and run this program?

#include <stdio.h>
int main (void) {

int 1= 1,7 = 1;

int wl,w2;

wl = (1 >0) & (3 <0) |] (1 <0) && (] > 0);
w2 = (1L <=0) || (J>0) & (1 >=0) || (J <=0);

printf ("%d",wl == w2);
return 0;

O the program outputs -1
O the program outputs 1

O the program outputs 0

Quiz

What happens if you try to compile and run this program?

#include <stdio.h>
int main(wvoid) {
int i,3=0;
for(i = 0; i < 10; i+=2)
switch (i) {
case 0: j++; break;
case 2: Jj++;
case 4: j++; break;
default: j——;
}
printf ("%d",) s
return 0;

O the program outputs 2
O the program outputs 1

O the program outputs 0

Quiz

What happens if you try to compile and run this program?

#include <stdio.h>
int main(void) {
int i,t[b];
for(i = 0; 1 < 5; i++)
t[i] = 2 * i;
i=0;
for(i = 0; 1 < 5; i++4)
i+= t[i]:
printf ("sd",1i):
return 0;

O the program outputs 13
O the program outputs 14

O the program outputs 12

