
Maciej Sobieraj

Lecture 5

Outline

1. Aggregating data into arrays

1. Sorting data: in real life and in the computer

memory

2. Initiators - the simple way to set an array

3. Not only ints

4. Pointers: another kind of data in the “C” language

5. Pointers vs. arrays: different forms of the same

phenomenon

6. The string: a very special vector

2. Quiz

Sorting an array

• The array can be sorted in two ways:

 increasing (or more precisely – non-decreasing) if,

in every pair of adjacent elements, the former element

is not greater than the latter;

 decreasing (or more precisely – non-increasing) if,

in every pair of adjacent elements, the former element

is not less than the latter.

Sorting an array

• We’ll try to use the following approach:

 we’ll take the first and second elements and compare

them; if we determine that they’re in the wrong order

(the first is greater than the second), we’ll swap them

around;

 if they’re in the right order, we’ll do nothing.

 A glance at our table confirms the second condition –

the elements #1 and #2 are in the proper order,

as 8 < 10.

Sorting an array

• We can go further and look at the third and

fourth elements.

Sorting an array

• Now we check the fourth and fifth elements.

Sorting an array

• The first pass through the array is complete.

We’re still far from finishing our job

Sorting an array

• Now, for a moment, try to imagine this array in a

slightly different way

• The sorting method derives

its name from this same

observation – it's called

a bubble sort.

Sorting an array

• We start with the second pass through the array.

We look at the first and second elements - a

swap is necessary!

Sorting an array

• Now the second and third elements: yep, 8 is a

bubble and goes up to the surface

Sorting an array

• Time for the third and fourth elements: we have

to swap them too

Sorting an array

• The second pass is finished and 8 is already in

place. We start the next pass immediately.

Sorting an array

• Now 6 wants to find its place. We’ll help it and

swap the second and third elements.

Sorting an array

Sorting an array

• How many passes do we need to sort the entire

array?

 We answer this by doing the following: we introduce

another variable; its task is to observe if any swap

was done during the pass or not; if there was no

swap, then the array is already sorted and nothing

more has to be done.

 We declare a variable named swapped and we

assign a value of 0 to it to indicate that there were no

swaps. Otherwise, it will be assigned 1.

Sorting an array

Sorting an array

Outline

1. Aggregating data into arrays

1. Sorting data: in real life and in the computer memory

2. Initiators - the simple way to set an array

3. Not only ints

4. Pointers: another kind of data in the “C” language

5. Pointers vs. arrays: different forms of the same

phenomenon

6. The string: a very special vector

2. Quiz

Initiators - the simple way to set an

array

• The vector initiator is simply a list of values

enclosed inside curly brackets.

Initiators - the simple way to set an

array

• If you provide fewer values than the size of an

array, like this, nothing bad will happen. The

compiler determines that those elements for

which you did not specify any value should be

set to 0.

Initiators - the simple way to set an

array

• If you provide more elements than can be stored

in an array, like this, you’ll get an error. Some old

compilers can notify you without stopping

compilation.

• This is called a compilation warning.

Initiators - the simple way to set an

array

• This is legal and will force the compiler to

assume that the size of the array is the same

as the length of the initiator.

• The vector array will be considered declared in

the following way:

 int vector[7] = { 0,1,2,3,4,5,6 };

Outline

1. Aggregating data into arrays

1. Sorting data: in real life and in the computer memory

2. Initiators - the simple way to set an array

3. Not only ints

4. Pointers: another kind of data in the “C” language

5. Pointers vs. arrays: different forms of the same

phenomenon

6. The string: a very special vector

2. Quiz

Not only ints

• You can use arrays of any other type. For

example – this is an array in which you can store

10 floating-point values.

Not only ints

• And you can store 20 characters here.

• The latter array will, however, be treated a little

differently by the compiler. Its initiator will be

different, too.

Outline

1. Aggregating data into arrays

1. Sorting data: in real life and in the computer memory

2. Initiators - the simple way to set an array

3. Not only ints

4. Pointers: another kind of data in the “C”

language

5. Pointers vs. arrays: different forms of the same

phenomenon

6. The string: a very special vector

2. Quiz

Pointers – the absolute basics

• Pointers are also values, but are different from

those we’ve operated with so far.

• Memory size is expressed in units called bytes,

and you also know that when you declare any

variable, for example, in such an obvious and

simple way, the variable occupies a little piece

of the computer memory.

Pointers – the absolute basics

• From now on, we’re also interested in where this

value is stored.

• This trait of the data (to say it more formally,

attribute) is often called the address. We all live

at certain addresses, just like every variable

“lives” at its address too.

• Try to see this important difference:

 the value of the variable is what the variable stores;

 the address of the variable is information about

where this variable is placed (where it lives).

Pointers – the absolute basics

• Pointers are used to store information about the

location (address) of any other data. We can say

that pointers are like signposts. They don’t say

anything about the place itself, but they show

clearly how to reach it.

The first pointer

• The presence of the asterisk means that p is

a pointer and will be used to store information

about the location of the data of type int.

How do we assign a value?

• Can we assign a value to the pointer? Of course

we can, in the same way you can assign any

value to any other variable: by using the =

operator.

• Using a literal is not an option.

How do we assign a value?

• A pointer which is assigned a value of zero is

called a null pointer (as in Latin, nullus – none).

How do we assign a value?

• The NULL symbol is actually equal to zero. It

looks like a variable but you cannot modify its

value.

• NULL should be assigned only to pointers.

• if you want to use the NULL symbol, you have to

include one of the following header files:

stdio.h or stddef.h.

How do we assign a value?

• We may assign to the pointer a value which

points to any already existing variable.

• To do that, we need an & operator, called the

reference operator.

How do we assign a value?

• After completing the assignment, the p variable

will point to the place where the i variable is

stored in the memory.

How do we assign a value?

• If you assign NULL to the pointer, it’ll look like

this. From now on, the p pointer points to neither

the i variable nor to any other variable.

How do we assign a value?

• We declare a variable of type int (ivar) and a

variable of type int * (ptr)

• Now let’s assign the value of 2 to the ivar

variable

How do we assign a value?

• Now we make the ptr pointer point to the ivar

variable.

How do we assign a value?

• How do we get a value pointed to by the

pointer?

• We have to use a well-known operator (the

asterisk: “*”) but in a completely new way – as a

dereferencer.

How do we assign a value?

• The following invocation will display 2 on the

screen, as the printf's second argument is the

dereferenced ptr value

How do we assign a value?

• If you write a statement like the one here → you

won't change the pointer value. You’ll instead

change the value pointed to by the pointer.

How do we assign a value?

• Don't forget that if you declare a pointer in the

following way:

 ANY_TYPE *pointer;

• it means that:

 the pointer variable is of type ANY_TYPE*

 the * pointer expression is of type ANY_TYPE

Another new operator

• The new operator expects that its argument is a

literal, or a variable, or an expression

enclosed in parentheses, or the type name

• The operator provides information on how many

bytes of memory its argument occupies

Another new operator

• Variable i will be assigned the value of 1,

because char values always occupy one byte.

• Note that we can achieve the same effect by

writing:

 i = sizeof(char);

Another new operator

• Variable i will be set to the value of 10, because

this is the number of bytes occupied by the

entire tab array.

Another new operator

• Variable i will be set to the value of 1

Another new operator

• Values of the int type occupy 32 bits, i.e. 4 bytes

in most modern compilers/computers, but we

cannot guarantee that this is true in all cases.

Another new operator

Another new operator

Outline

1. Aggregating data into arrays

1. Sorting data: in real life and in the computer memory

2. Initiators - the simple way to set an array

3. Not only ints

4. Pointers: another kind of data in the “C” language

5. Pointers vs. arrays: different forms of the same

phenomenon

6. The string: a very special vector

2. Quiz

Pointers vs. arrays

• What do pointers and arrays have in

common?

 if you see the name of an array without the indices,

then it’s always a synonym of the pointer pointing

to the first element of the array.

Pointers vs. arrays

Pointers vs. arrays

• The two assignments that follow the declaration

set Ptr to the same value. In other words, the

following comparison is always true:

 Arr == &Arr[0]

Pointers vs. arrays

• The arithmetic of pointers is significantly different

from the arithmetic of integers, as it’s relatively

reduced and allows the following operations:

 adding an integer value to a pointer, giving a pointer

(ptr + int → ptr);

 subtracting an integer value from a pointer, giving a

pointer (ptr – int → ptr);

 subtracting a pointer from a pointer, giving an

integer (ptr – ptr → int);

 comparing the two pointers for equality or inequality

(this gives a value of type int of either true or false)

(ptr == ptr → int; ptr != ptr → int).

Pointers vs. arrays

• At this point, ptr1 points to the first element of

array.

Pointers vs. arrays

• After the following assignment, ptr2 points to

the first element of array, too

Pointers vs. arrays

• We can check if the two pointers are equal –

yes, they are, as they point to the same element

of the array.

Pointers vs. arrays

Pointers vs. arrays

• We can interpret this operation as follows:

 it has taken into account what type is pointed to by

the pointer – in our example it’s int;

 it has determined how many bytes of memory the

type occupies (the sizeof operator is used

automatically for that purpose) – in our case it’s sizeof

(int);

 the value we want to add to the pointer is multiplied

by the given size;

 the address which is stored in the pointer is

increased by the resulting product.

Pointers vs. arrays

• What would happen if we added 2 instead of 1?

 In this case the ptr2 would be increased by (2 * sizeof

(int)) and thus ptr2 would move through two int

values and would point to the third element of the

array (namely, array[2]).

 The comparison

• ptr1 == ptr2

 is obviously false, while this one

• ptr1 != ptr2

 is true, as the addresses the pointers point to differ.

Pointers vs. arrays

• The final result tells us how many variables of a

given type (i.e. int) fit between the addresses

stored in the pointers.

Pointers vs. arrays

• Try to guess the result of the following operation:

Pointers vs. arrays

• Here’s the answer

Pointers vs. arrays

• Let’s assume that the following operation has

been performed. Can you guess the effect?

Pointers vs. arrays

• Let’s assume that the following operation has

been performed. Can you guess the effect?

Pointers vs. arrays

• Try to determine the result of the following

subtraction.

Outline

1. Aggregating data into arrays

1. Sorting data: in real life and in the computer memory

2. Initiators - the simple way to set an array

3. Not only ints

4. Pointers: another kind of data in the “C” language

5. Pointers vs. arrays: different forms of the same

phenomenon

6. The string: a very special vector

2. Quiz

Arrays of characters – the strings

• Character arrays are treated in a special way.

• This array is capable of storing 10 characters.

• Do you know what we can use similar tables of

its kind for?

 The most obvious example is personal data

processing – first names, last names, places of

residence, etc. These values are called strings.

Arrays of characters – the strings

• We cannot use the sizeof operator for this

purpose. It’ll tell us how many characters are

occupied by the entire array, but won’t tell us

how many of them we actually use to store the

name.

• This issue is solved in the "C" language in a

special way. Every string must end with a special

tag, something like a flag waving in the wind and

announcing: here is the end of the string – all

subsequent characters have no meaning.

Arrays of characters – the strings

• According to “C” language conventions, the

terminating tag is denoted in the following way

(note: it’s a zero, not the letter “O”).

• We call this character an empty character or nul

Arrays of characters – the strings

• How does it work? How do we store the name of

our hobbit hero in the array?

Arrays of characters – the strings

• We can initialize a character array in the same

way as any other array, like this:

• Unfortunately, we can’t do this in regular

assignments.

Arrays of characters – the strings

• There’s another method for initializing character

arrays.

• Don't forget – it only works with character arrays.

Arrays of characters – the strings

• Whenever a string appears in the program, the

compiler treats it in a very special way and

performs the following steps:

 the compiler counts how many characters are

inside the string;

 the compiler reserves memory for the string but gets

one character more than the string's;

 the compiler copies the entire string from our source

code into the reserved memory and appends an

empty character at the end;

 the compiler treats the string as a pointer to the

reserved memory.

Outline

1. Aggregating data into arrays

1. Sorting data: in real life and in the computer memory

2. Initiators - the simple way to set an array

3. Not only ints

4. Pointers: another kind of data in the “C” language

5. Pointers vs. arrays: different forms of the same

phenomenon

6. The string: a very special vector

2. Quiz

Quiz

Quiz

Quiz

Quiz

Quiz

