
Maciej Sobieraj

Lecture 6

Outline

1. Aggregating data into arrays

1. Assigning values to strings

2. Processing strings

2. Arrays vs. structures: different aggregates for

different purposes

1. The real meaning of array indexing

2. Using pointers: perils and disadvantages

3. Arrays of arrays: multidimensional arrays

4. Memory allocation and deallocation: malloc() and

free()

3. Quiz

Initializing strings

• String initializations have another interesting

extension.

• This means that we want the compiler itself to

count the characters.

• The compiler will add an empty character to the

string so the declaration works the same way as

this one:

 char protagonist[6] = "Snape";

Assigning strings

• Can we use the same clear methods to assign a

string to the character arrays?

• Unfortunately, not.

• The compiler sees the following: there’s a

character array on the left side of the =

operator; on the opposite side there’s a string

• protagonist is a pointer of type char *

Assigning strings

• There’s a function that makes this task so much

easier.

• This function is called strcpy (it's a conflation of

two words: STRing CoPY).

A very important distinction

• You already know that it results in the following:

 an array of 10 characters will be created;

 the following characters: 'F', 'r', 'o', 'd', 'o' and '\ 0' will

be stored in the variable;

 whenever you use the name protagonist it’ll be

interpreted as a pointer to the first element i.e. the

one that contains the letter 'F'.

A very important distinction

• This is what happens:

 the compiler reserves the memory of 11 bytes (10

for the hero's name itself + 1 for an empty char) and

fills it with the characters 'D', 'u', 'm', 'b', 'l', 'e' , 'd', 'o',

'r' , 'e' and '\0';

 the compiler creates a variable named hero of type

char *;

 the compiler assigns the pointer to a newly reserved

string to the hero variable.

A very important distinction

• The compiler will perform the following steps

 reserve 7 bytes for the new string and fill it with

“Sirius”, ending with the empty character;

 store the pointer of the newly created string in the

hero variable.

• The regular pointer variable (in contrast to the

array name) is a valid l-value.

A very important distinction

• The strcpy has no intention of changing the

pointer's value. It only copies the string “Pippin”

along with its empty character into the location

pointed to by the hero variable.

• There are two important things that you have to

consider before you use the strcpy:

 Do you know for sure where the left argument points

to?

 Is there sufficient room to accommodate the string?

Outline

1. Aggregating data into arrays

1. Assigning values to strings

2. Processing strings

2. Arrays vs. structures: different aggregates for

different purposes

1. The real meaning of array indexing

2. Using pointers: perils and disadvantages

3. Arrays of arrays: multidimensional arrays

4. Memory allocation and deallocation: malloc() and

free()

3. Quiz

How do we print a string?

• The “C” language functions are described by

specifying the prototype. The prototype consists

of:

 a return type (the type of the result)

 the name of the function

 a list of its parameters as well as their types

• The prototype of puts is as follows

How do we print a string?

• Here are three valid forms of puts's invocation:

 with the name of the character array

 with the name of the pointer of type char *

 with the string literal

How do we print a string?

• The puts prototype specifies that the function

returns a result of type int.

 it’s a non-negative number if everything goes well and

-1 if puts cannot meet our demands due to any

reason.

How do we print a string?

• The second function is printf

• It’s %s where the letter “s” stands for string.

Some useful functions

• More essential functions that let us work with

strings efficiently and smoothly are contained in

the header file named string.h.

strlen: STRing LENgth

• strlen: STRing LENgth – the length of the

string

 The strlen function is used to count the characters in

a string, excluding the empty character at the end.

• An invocation like this:

 strlen (ptr)

• returns 8 as a result

strcpy: STRing CoPY

• strcpy: STRing CoPY – make a copy of a

string

 The strcpy function makes a copy of a string pointed

to by source and stores it at the location pointed to by

destination.

 The result of the function is the same pointer as the

one specified as destination.

strcpy: STRing CoPY

• An invocation like this:

 strcpy(string, ptr);

• places a copy of the string “computer” at the

location pointed to by the variable string.

• The invocation:

 strcpy(string, "Alice has a cat");

• causes the string array to contain the phrase

“Alice has a cat” along with the closing null

character.

strncpy: STRing N CoPY

• strncpy: STRing N CoPY – make an n-long

copy of a string

 The strncpy function makes a copy of a maximum n

characters taken from the string pointed to by source

and stores them in the location pointed to by

destination.

 The finishing null character is only added to the

copied string if this character is in n range.

strncpy: STRing N CoPY

• This invocation:

 strncpy (string, ptr, 3);

• fills the array string with the letters 'C', 'o' and

'm'.

• This invocation:

 strncpy (string, "Alice has a cat", 5);

• fills the array string with the string “Alice”.

strcat: STRing conCATenation

• strcat: STRing conCATenation – append a

string to another string

 The strcat function appends a copy the string

pointed to by source to the end of the string pointed to

by destination.

 The null character that originally closes destination is

removed.

 Then a copy of source is appended to destination

along with its closing null character.

strcat: STRing conCATenation

• This sequence of instructions:

 strcpy(string, ptr);

 strcat(string, ptr);

• causes the array string to contain “ComputerComputer”

followed by the null character.

• This sequence of instructions:

 strcpy (string, "Alice ");

 strcat (string, "has no ");

 strcat (string, ptr);

• fills the array string with “Alice has no Computer”.

Outline

1. Aggregating data into arrays

1. Assigning values to strings

2. Processing strings

2. Arrays vs. structures: different aggregates for

different purposes

1. The real meaning of array indexing

2. Using pointers: perils and disadvantages

3. Arrays of arrays: multidimensional arrays

4. Memory allocation and deallocation: malloc() and

free()

3. Quiz

Indexing vs pointers

• We’ve created a 10 element array of char and

put a string “dump” there. Eventually, we

consume 5 chars of the array.

Indexing vs pointers

• Don't forget:

 apostrophes: char

 quotes: char *

Indexing vs pointers

• It won’t happen for sure:

 the compiler won’t signal either an error or a

warning;

 the string contained in the array will not be changed.

Indexing vs pointers

• The “C” language standard says: if any pointer is

followed by an indexing operator, like this:

 t[i]

• it’s always taken as:

 *(t + i).

Step 1

• The name word is interpreted as a pointer to the

first element of the array.

Step 2

• The pointer is increased by one (word + 1).

Step 2

• The increased pointer is an argument for the

dereference operator, which means that it’s of

type char, at least from a syntactic and semantic

point of view.

• This means that this assignment is fully

permissible

Step 2

• The meaning of this assignment is exactly the

same as the one here

Step 3

• Can you explain why we used the parentheses?

Indexing vs pointers

• A value of 1 is added to the dereferenced

character

Indexing vs pointers

• if t is a pointer and i is an expression of type int,

t[i] is equivalent to *(t + i);

• the addition is commutative, so we can write the

previous expression in the following way: *(i + t);

• this also means that we’re allowed to write the

same indexing operation as i[t].

Indexing vs pointers

• Now we set p to point to the second element of

the array string. The recommended form of this

assignment is as follows:

 p = string + 1;

• Acceptable, though less elegant (however, some

would argue, clearer), is the following form:

 p = &string[1];

Indexing vs pointers

• The p pointer will point to the second element of

the array

Indexing vs pointers

• Can you answer the question of what

distinguishes these two instructions?

 c = *p++;

• and

 c = (*p)++;

Indexing vs pointers

• We can explain: the first assignment is as if the

following two disjoint instructions have been

performed;

 c = *p;

 p++;

• The second assignment is performed as follows:

 c = *p;

 string[1]++;

Indexing vs pointers

• Imagine the following assignment:

 p = string + 2;

• p points to the third element of the string array.

What happens now?

 p[-1] = 'e';

Indexing vs pointers

• The compiler treats this as normal and thinks

that we’re trying to do something like this:

 *(p - 1) = 'e';

Outline

1. Aggregating data into arrays

1. Assigning values to strings

2. Processing strings

2. Arrays vs. structures: different aggregates for

different purposes

1. The real meaning of array indexing

2. Using pointers: perils and disadvantages

3. Arrays of arrays: multidimensional arrays

4. Memory allocation and deallocation: malloc() and

free()

3. Quiz

Pointers could be dangerous

• Mistake no. 1: use of an uninitialized pointer

 Some compilers gives an error. „Uninitialized local

variable”

Pointers could be dangerous

• Mistake no. 1: use of an uninitialized pointer

 The other side of the same mistake

Pointers could be dangerous

• Mistake no. 2: exceeding the size of the

array

 Your program may finish its work with a message

about a memory violation error

Pointers could be dangerous

• Mistake no. 3: non-terminated strings

Outline

1. Aggregating data into arrays

1. Assigning values to strings

2. Processing strings

2. Arrays vs. structures: different aggregates for

different purposes

1. The real meaning of array indexing

2. Using pointers: perils and disadvantages

3. Arrays of arrays: multidimensional arrays

4. Memory allocation and deallocation: malloc() and

free()

3. Quiz

Not only vectors

• Let’s consider the case when an array's

elements are just arrays.

• A chessboard is composed of rows and

columns. There are 8 rows and 8 columns.

Not only vectors

• Unfortunately, we have 8 of these rows. Does

this mean that we have to declare 8 arrays like

this?

 int row1[8], row2[8], row3[8], row4[8], row5[8],

row6[8], row7[8], row8[8];

• A chessboard is in fact an 8-element array of

elements as single rows. Let's summarize our

observations:

 elements of rows are fields, 8 of them per row;

 elements of the chessboard are rows, 8 of them

per chessboard



Not only vectors

• The chessboard variable is a two dimensional

array. It’s also called, by analogy to algebraic

terms, a matrix.

• The appearance of two pairs of brackets tells the

compiler that the declared array is not a vector –

it's an array whose elements are vectors.

Not only vectors

Not only vectors

• we can set some chess pieces on our board.

First, let's put all the rooks on the board:

 chessboard[0][0] = ROOK;

 chessboard[0][7] = ROOK;

 chessboard[7][0] = ROOK;

 chessboard[7][7] = ROOK;

• If we wanted to place a knight on C4, we would

do this as follows:

 chessboard[3][2] = KNIGHT;

• And now a pawn to E5:

 chessboard[4][4] = PAWN;

Not only vectors

• To find any element of a two-dimensional array,

we have to use two “coordinates”: a vertical

(row number) one and a horizontal (column

number) one.

• This gives us a total of 24 * 31 = 744 values.

Not only vectors

float temp[31][24];

int day;

float sum = 0.0, average;

for(day = 0; day < 31; day++)

 sum += temp[day][11];

average = sum / 31;

printf("Average temperature at noon: %f",

average);

Not only vectors

Not only vectors

Not only vectors

Not only vectors

• The “C” language doesn’t limit the size of the

array's dimensions. Here we show an example

of a 3-dimensional array.

Not only vectors

• Now imagine a hotel. It's a huge hotel consisting

of three buildings, 15 floors each. There are 20

rooms on each floor. We need an array that can

collect and process information on the number

of guests registered in each room.

Not only vectors

• Let's check if there are any vacancies on the

fifteenth floor of the third building:

 int room;

 int vacancy = 0;

 for (room = 0; room <20; room++)

 if (guests[2][14][room] == 0)

 vacancy++;

• The vacancy variable contains 0 if all the rooms

are occupied; otherwise it displays the number

of available rooms.

Outline

1. Aggregating data into arrays

1. Assigning values to strings

2. Processing strings

2. Arrays vs. structures: different aggregates for

different purposes

1. The real meaning of array indexing

2. Using pointers: perils and disadvantages

3. Arrays of arrays: multidimensional arrays

4. Memory allocation and deallocation: malloc()

and free()

3. Quiz

void – the very exceptional type

• The function should be invoked without

parameters and return no result.

• This is how we should invoke it:

 nothingatall();

void – the very exceptional type

• Despite the fact that the void type doesn't

represent any useful value, you can still declare

pointers to this type

• the type void *, is called an amorphous pointer

to emphasize the fact that it can point to any

value of any type.

• a pointer of type void * cannot be subject to

the dereference operator

Memory on demand

• To manage the allocating and freeing of memory,

the “C” language provides a set of specialized

functions.

• Using both functions, however, requires the

inclusion of the header file stdlib.h.

• The first function is used to request access to

the memory block of the specified size.

• When the allocated memory is no longer needed

and/or utilized, it would be a good idea to return

it to the operating system. We do this by using

the second of these two functions.

Memory on demand

• The function that performs the first task has the

following prototype

 the name of the function is a conflation of Memory

ALLOCation;

 its only parameter provides information about the size

of the requested memory and is expressed in bytes;

 the function returns a pointer of type void * which

points to the newly allocated memory block, or is equal

to NULL to indicate that the allocation requested could

not be granted;

Memory on demand

• The function that performs the first task has the

following prototype

 the function doesn’t have a clue as to what we want

to use the memory for and therefore the result is of

type void *; we’ll have to convert it to another usable

pointer type;

 the allocated memory area is not filled (initiated) in

any way, so you should expect it to contain garbage.

Memory on demand

• The function invoked when the memory is no

longer necessary has the following prototype

 the function name doesn't require any comments;

 the function does not return any results so its type

is defined as void;

 the function expects one parameter – the pointer to

the memory block that is to be released; usually it’s a

pointer previously received from the malloc or its

kindred; using another pointer value may cause some

kind of disaster;

Memory on demand

• The function invoked when the memory is no

longer necessary has the following prototype

 the function doesn't need to know the size of the freed

block; you can only release the entire allocated block,

not a part of it;

 after performing the free function, all the pointers that

point to the data inside the freed area become illegal;

attempting to use them may result in abnormal

program termination.

Memory on demand

Memory on demand

Memory on demand

Memory on demand

Outline

1. Aggregating data into arrays

1. Assigning values to strings

2. Processing strings

2. Arrays vs. structures: different aggregates for

different purposes

1. The real meaning of array indexing

2. Using pointers: perils and disadvantages

3. Arrays of arrays: multidimensional arrays

4. Memory allocation and deallocation: malloc() and

free()

3. Quiz

Quiz

Quiz

Quiz

Quiz

Quiz

