Maciej Sobieraj

Lecture 7

Outline

1. Arrays vs. structures: different aggregates for
different purposes

Arrays of pointers as multidimensional arrays ‘{:

Declaring arrays: traps and puzzles O

The structures: why?

Declaring and initializing structures

Pointers to structures and arrays of structures

. Basics of recursive data collections

2. Quiz

o 0k W PE

I | Arrays of pointers

« We only know that the number of columns is
stored In the cols variable and the number of
rows in the rows variable.

* We’re not going to attempt to allocate the array
In the following way:
= int *ptrtab = (int *) malloc(rows * cols * sizeof(int));
* |f we want to access the element in column ¢

and row r, we would have to calculate the
pointer to the element as follows:

= ptrtab + (cols *r) + ¢

i-node

direct,

direct,

single
direct

double
indirect

triple
indirect

Arrays of pointers

data blocks

Arrays of pointers

 This is how we do It:

= to avoid the inconvenience of skipping over the
subsequent rows, we’'ll store the pointer to the {:
beginning of every row so we can reach eachrow o
without any acrobatics. How do we store these
pointers? In the array, of course! We'll call it the arr
of rows; every row will have as many elements as
columns of the desired array;

»

a separate row;

= we need one more pointer to point to the array ol
rows — we call it ptrtab.

Arrays of pointers

I | Arrays of pointers

 This means that the type of ptrtab is "a pointer
to a pointer to int", which is denoted as “int **”

int **ptrtab;

I | Arrays of pointers

ptrtab = (int **) malloc (rows * sizeof (int *));

 Firstly, the pointer returned by malloc surrender
IS converted to type int ** and assigned to
ptrtab.

« Secondly, the elements of the array of rows are
pointers to the rows, so their type is int * and
hence, the size of the array Is expressed ag,
sizeof (int *) multiplied by the number of rovj

I | Arrays of pointers

« Finally, we need to allocate memory for every
row and store the resulting pointer inside the
right element of the array of rows.

for (r=0; r <rows; r++)
ptrtab/r] = (int *) malloc (cols * sizeof (int));

I | Arrays of pointers

* For example, if we want to assign O to the
element lying in row r, column c, we'll do it this
way:

.ptrtab[r][c] = 0;

Arrays of pointers

Arrays of pointers

« How does it work?

= the ptrtab[r] expression is interpreted as *(ptrtab + r),
which means the dereferencing of the element

pointing to the selected row; (o)
* the pointer is dereferenced once more so the entire
iIndexing expression looks as follows: {:}
e *(*(ptrtab +r) + C)

= and this is simply the desired
value of type int.

I | Arrays of pointers

* The advantage of such arrays is that, unlike
ordinary arrays, every row may be of a different

length. {:

* |t refers specifically to triangular matrices. ©

I | Arrays of pointers

* Introws =5, r;
Int **ptrab;
ptrtab = (int **) malloc (rows * sizeof (int *));
for (r = 0; r <rows; r++)
ptrtab[r] = (int *) malloc (sizeof (int) * (r + 1))

Outline

1. Arrays vs. structures: different aggregates for
different purposes

Arrays of pointers as multidimensional arrays ‘{:

Declaring arrays: traps and puzzles

The structures: why?

Declaring and initializing structures

Pointers to structures and arrays of structures

. Basics of recursive data collections

2. Quiz

o

o 0k W PE

I | Some declarative traps

* |In this way, we’ve declared a variable array
which is a 10-element array of pointers to data of
type int.

int *array|10];

I | Some declarative traps

* And now let's look at a seemingly very similar,
but completely different, declaration.

|t declares array as a pointer to a 10-element
array of type int.

int (*array)|10/;

I | Some declarative traps

* The statement creates a variable array, which is
a pointer to a 10-element array whose
elements are pointers to ints.

int *(*array)|10/;

Outline

1. Arrays vs. structures: different aggregates for
different purposes

Arrays of pointers as multidimensional arrays ‘{:

Declaring arrays: traps and puzzles

The structures: why?

Declaring and initializing structures

Pointers to structures and arrays of structures

. Basics of recursive data collections

2. Quiz

o

o 0k W PE

I | Structures — why do we need
them?

char student name[100000][26];

+ Let's try to manipulate that array. For example,
suppose that the first registered student was M.
Bond (James Bond).

= strcpy(student_name[0],"Bond");

I | Structures — why do we need
them?

float student time[100000];

« We know that Mr. Bond spent three hours and
thirty minutes studying our course. We'll denote
it in the following way:

= student_time[0] = 3.5;

them?

* The primary objection is that the data regarding
the same object (a student) is dispersed
between three variables, although it should
logically exist as a consolidated unit.

« A structure contains any number of elements

of any type. Each of these elements is called a
field.

I | Structures — why do we need

I | Structures — why do we need
them?

 This Is the declaration of the structure:

struct STUDENT {
char name|26];
float time;
int recent_chapter;

b

I | Structures — why do we need
them?

« We should emphasize that the previous
declaration doesn't create a variable, but only
describes the structure we're going to use in our
program.

* This declaration sets up a variable (a structured
variable) named stdnt.

struct STUDENT stdnt;

them?

* As the “C” language offers a specialized
Indexing operator [] for arrays, we also have the
selection operator, designed for structures and
denoted as a single character . (dot).

* The priority of the selection operator is very high;
equal to the priority of the [] operator.

I | Structures — why do we need

?

I | Structures — why do we need
them

* This Is a binary operator.

ts left argument must

Identify the structure while the right argument
must be the name of the field known in this

structure. Std nt .

time

« Consequently, you can use both of these

selectors:
= stdnt.time = 1.5;
e and

= float t;
= { = stdnt.time;

I | Structures — why do we need
them?

 Virtually any data could be used as a structure's
fileld: scalars (including pointers), arrays and
also almost all of the structures. We say “almost”
because a structure cannot be a field of itself¢

« Structures can be aggregated inside an array, S0
If we want to declare an array consisting of
STUDENT structures:

struct STUDENT stdnts[100000]; A==

I | Structures — why do we need
them?

* This means that if we want to select the time
fleld of the fourth stdnts' element, we write it as
follows:

= stdnts[3].time

« We've collected all these assignments which
have been performed for the three separate
arrays. Analyze them carefully:

= strcpy(stdnts[O].name, "Bond");
= stdnts[0].time = 3.5;
= stdnts[O].recent_chapter = 4;

I | Declaring the structures

* For the purposes of simplicity, we’ll use a simple
structure designed to store the date.

struct DATE {
int year;
int month;
int day;
b
* we can write this declaration much more
compactly:
= struct DATE {
Int year,month,day;

%

I | Declaring the structures

 The new variable would be declared, for
example, in this way:
= struct DATE DateOfBirth:

* We can use It to store Harry Potter's date of
pirth:
= DateOfBirth.year = 1980;
= DateOfBirth.month = 7;
= DateOfBirth.day = 31;

* We can also use the structure tag to declar
array of structures:

= struct DATE visits[100];

I | Declaring the structures

« We can defining the structure tag and declaring
any number of variables simultaneously in the
same statement, like this:

= struct DATE {
Int year, month, day;
} DateOfBirth, visits[100];

struct DATE current_date;

I | Declaring the structures

* We can also omit the tag and declare the
variables only:

= struct {
Int year, month, day;
} the date_of the end of the world,;
 In this case, however, determining the type of the

variable the _date of the end of the world (e.g. if we
want to use it with the sizeof operator) becomes
troublesome. Without a tag it has to be denoted as:

= sjzeof(struct {int year, month, day;})

sizeof(struct DATE).

Declaring the structures

e A structure could be a field inside another

structure. struct STUDENT {

char name|26];

float time;

int recent chapter;

struct DATE last_visit;
} HarryPotter;

= HarryPotter.last visit.year = 2012;
= HarryPotter.last_visit.month = 12;
= HarryPotter.last_visit.day = 21;

Outline

1. Arrays vs. structures: different aggregates for
different purposes

Arrays of pointers as multidimensional arrays ‘{:

Declaring arrays: traps and puzzles

The structures: why?

Declaring and initializing structures

Pointers to structures and arrays of structures

. Basics of recursive data collections

2. Quiz

o

o 0k W PE

Structures — a few important rules

« A structure's field names may overlap with the
tag names, and this is generally not considered

a problem, although it may cause some difficulty
In reading and understanding the program.

struct STRUCT |
int STRUCT;
} Structure;

Structure.STRUCT = 0; /* STRUCT is a field name here */

I | Structures — a few important rules

* It may happen that a particular compiler doesn't
like it when a structure's tag name overlaps with

a variable's name.

struct STR {
int field:

} Structure;
int STR;

Structure.field = 0;
STR=1;

Structures — a few important rules

« Two structures can contain fields with the
same names - the following snippet is correct

struct {
int f1;
} strl;

struct {
char f1;
} str2;

str1.f1 = 32;
str2.f1 = str1.f1;

I | Initializing structures

« Structures can be Initialized as early as at the
time of declaration. The structure's initiator Is
enclosed in curly brackets and contains a list of
values assigned to the subsequent fields,
starting from the first.

struct DATE date = {2012, 12, 21 };

Initializing structures

struct DATE date ={ 2012, 12, 21 };

 This Initiator is equivalent to the following
sequence of assignments:
= date.year = 2012;
= date.month = 12;
= date.day = 21;

I | Initializing structures

struct STUDENT he = { "Bond", 3.5, 4, { 2012, 12, 21 }};

* The Initiator of this form is functionally equivalen& C
to the following assignments:
= strcpy(he.name, "Bond");
= he.time = 3.5;
= he.recent_chapter = 4;
= he.last_visit.year = 2012;
= he.last_visit.month = 12;
* he.last_visit.day = 21,

I | Initializing structures

* Due to the completeness of the inner initializer, it
can be written in the following, simplified form:
= struct STUDENT he ={"Bond", 3.5, 4, 2012, 12, 21 };

* This type of simplification (omitting internal curly
braces) can also be applied in the following case
(with caution, though):

= struct STUDENT she = { "Mata Hari", 12., 12, {2012} };

= she.last_visit.month = 0;
= she.last_visit.day = O;

I | Initializing structures

« What happens when we apply an “empty”
Initializer?

struct STUDENT nobody = { };

« Here's the answer:
= strcpy(nobody.name, "),
= nobody.time = 0.0;
= nobody.recent_chapter = 0;
= nobody.last visit.year = 0;
= nobody.last_visit.month = 0;
= nobody.last_visit.day = 0O;

Outline

1. Arrays vs. structures: different aggregates for
different purposes

1. Arrays of pointers as multidimensional arrays {:
2. Declaring arrays: traps and puzzles O

3. The structures: why?

4. Declaring and initializing structures {::}
5. Pointers to structures and arrays of structures

6. Basics of recursive data collections o

2. Quiz

I | Pointers to structures

 Let's declare a pointer to the structures of type
struct STUDENT.

struct STUDENT *sptr;

* |f we want to allocate memory for one structure;
we can do it in the following way:

= sptr = (struct STUDENT *) malloc(sizeof(struct
STUDENT));

I | Pointers to structures

* The sptr points to a piece of memory that can be
used as if it were a “regular” structure of type
struct STUDENT.

« The following dereference identifies the entire
structure:
= *sptr
« Unfortunately, an expression like the one below
IS invalid:
= *gptr.time= 1.0;

I | Pointers to structures

* This error Is caused by the very high priority of
the selection operator — it's higher than the
priority of the dereference operator, so the entire
expression will be interpreted as follows:

= *(sptr.time)

* |t forces us to take into account the mutual

arrangement of both these operators and to

write the expression with additional
parentheses:

= (*sptr).time

I | Pointers to structures

« This means that given form:

pointer -> field

* IS by definition equal to the form:
= (*pointer).field

I | Pointers to structures

« We can use this information to assign some

values to the fields of the newly allocated

structure: {:
= strcpy(sptr -> name, "Dobby"); O
= sptr ->time = 0.1;
= sptr -> recent_chapter = 0;
= sptr -> last_visit.year = 2002,
= sptr -> |last_visit.month = 1;
= sptr -> last_visit.day = 1;

I | Unions

« Syntactically, they're both very similar. You only
have to replace the keyword struct with union
and the whole declaration remains valid. The
real clue is hidden deeper — inside the
computer's memory.

Unions

* They both have two fields named a and b.
Accessing the fields is identical in both cases:

= Datal.a =0;
Data2.b = 0; struct {
int a;
int b;
} Datal;
union {
int a;
int b;
} Data2;

I | Unions

* In a structure, all its fields are placed
successively. Every field has its own part of the
computer memory. In other words: each field is a
separate world and they don’t overlap. Modifying
the a field will leave the b field intact and vice

versa.

* This also means that the size of the structure is
not less than the total size of all its fields:

I | Unions

 |n contrast, in a union, all its fields are placed in
the same memory location. This means that

the a and b fields share the same part of the
memory.

 This fact has at least one interesting implication:
the union’s initializer has to have one element.

* It means also that modifying the a field will
modify the b field immediately.

I | Unions

#include <stdio.h>

* The program
. int main(void) {
will output struct {

two values: int a;
int b;

O and 1. } Datal={0,0};

union {

int a;

int b;
}Data2 ={0};

Datal.a++;

Data2.a++;

printf("%d %d\n", Datal.b, Data2.b);
return O;

Unions

#include <stdio.h>
int main(void) {

union {
int a;
float b;
} Data;

scanf("%d", &Data.a);
printf("\n%f\n", Data.b);
return 0;

o

I | Unions

« The Data union is equipped with two fields of
radically different types: int and float. As you
already know, these types use a completely
different method of internal representation.
Assigning the a field with the value of 1 won't set
the b field with anything even close to 1.

Outline

1. Arrays vs. structures: different aggregates for
different purposes

Arrays of pointers as multidimensional arrays ‘{:

Declaring arrays: traps and puzzles

The structures: why?

Declaring and initializing structures

Pointers to structures and arrays of structures

. Basics of recursive data collections

2. Quiz

o

o 0k W PE

I | Structures + Pointers = Lists

« A structure cannot be a field of itself, but any of
the structure's fields can be a pointer to the
structure currently declared.

struct ELEMENT {
int value;
struct ELEMENT *next;

I

* This is a recursive declaration, as the entityens
being declared refers to itself before the
declaration is completed.

I | Structures + Pointers = Lists

* The idea of a one-way linked list is based on the
observation that if we have a multitude of data
(e.g. integers), we can link them together (some
could say “aggregate them”), like beads on a
thread, and attach the thread to any steady
point.

Structures + Pointers = Lists

* We suggest you imagine something like this:

the threaded elements are structures of the same

type; g:

each of these structures will store an integer value ©

we assume that every structure will have a kind of
hook which can “attach” to the next bead in the Cha@

the role of coupling will be played by one specific fiel
that can store a pointer to the next element insidg theo
chain;

the thread has to be permanently attached so wqaisdrem
need a nail; we assign that role to the pointer vanggsl
commonly called "head" or "list header". o

I | Structures + Pointers = Lists

* Look again at the ELEMENT structure
declaration:

= a field named value will serve as storage for any '{:
useful values; O

= a field named next will be used to “attach” to the nex
structure in the chain;

= the first structure in the chain is “attached” to a head
variable, declared as follows: o
e struct ELEMENT *head:

= the last structure in the chain will be attached to ({drrr
nothing, so we'll assign the NULL pointer value t{gg§

next field. O \

I | Structures + Pointers = Lists

« Let's imagine a thread with three beads on it

Structures + Pointers = Lists

struct ELEMENT {
int value;
struct ELEMENT *next;

C

struct ELEMENT *head, *ptr;

/* the one-way linked list is created here

we don't know yet how it was done

we only know that the head points to element #1 */
ptr = head;

o

/* ptr points to the first element now; we will move it
through all elements until we reach the end */
while(ptr |= NULL) {
/* print the value stored in the element */
printf("value = %d\n", ptr -> value);

/* move ptr to the next element */
ptr = ptr -> next;

}
printf("done!");

Outline

1. Arrays vs. structures: different aggregates for
different purposes

Arrays of pointers as multidimensional arrays ‘{:

Declaring arrays: traps and puzzles

The structures: why?

Declaring and initializing structures

Pointers to structures and arrays of structures

. Basics of recursive data collections

2. Quiz

o

o 0k W PE

Quiz

What happens if you try to compile and run this program?

#include «<s=tdio.h>
struct 51 {
int pl;
¥
struct 52 {
int pl;
struct 51 =1;
bi
int main(void) {
struct 52 =2 = { 4, 5 };
printf({"%d",s2.pl + =2.=31.pl1);

return 0;

} O the program outputs 9

O the program outputs 4

O the program outputs 5

Quiz

What happens if vou try to compile and run this program?

#include <atdic._h>
finclude <stdlib_h>
struct 51 |

int pl,p2;
b
struct 52 |

int pl;
gtruct 51 3l;
int p2;

I

int main{void) {
int a = 0;

struct 52 =2 = { 1, Z, 3, 4 };
gtruct 52 *p;
p = {(3struct 52
o= alk;

2. pl = 0;
p->*pl + 32 .pl + p->p2 + p->3l.pi;
free(p);

printf("%d", g):

return 0;

*1malloc{gizecf {struct 52));

g =

O the program outputs 32
O the program outputs 16

O the program outputs 38

Quiz

What happens if you try to compile and run this program?

#include <stdic.h>

#include <stdlib.h>

int main{woid) |
int =**pt;
pt = {int **)mallocc (2 * aizec {int *)):
pt[0] = {(int *) malloc{sizecf{int) * 2);
pt[l] = {(int *) malloc{sizecf{int) * 2);
pt[1][1] = pt[0][0] = 1;
pt[0][1] = pt[1][0] = &;
printf("%d", pt[0][0] 7 pt[1l][0]):
free(pt[1l]):
free(pt[0]):
free (pt);
return 0;

O the program outputs 0.5
O the program outputs 1

O the program outputs 0

Quiz

What happens if you try to compile and run this program?
#include <stdioc.h>
int main(void) {

int t[2][3]1 ={ { 3, 2, 1}, {1, 2, 3} };

printf ("%d", sizeof(t) / sizeof(t[1]});
return 0;

O the program outputs &
O the program outputs 2

O the program outputs 3

Quiz

What happens if you try to compile and run this program?
#include <stdio.h>
int main(void) {
int t[2]1[31={ {3, 2, 1}, {1, 2, 3} &;
printf ("%d", sizecf(t) / sizecf(t[1]1[1]});

return 0;

O the program outputs 2
O the program outputs &

O the program outputs 3

Quiz

What happens if you try to compile and run this program?

#include <stdio.h>
int main(void) {
printf ("%c", "ABCD"[2]);

return 0;

O the program outputs A
O the program outputs C

O the program outputs B

