
Maciej Sobieraj

Lecture 7

Outline

1. Arrays vs. structures: different aggregates for

different purposes

1. Arrays of pointers as multidimensional arrays

2. Declaring arrays: traps and puzzles

3. The structures: why?

4. Declaring and initializing structures

5. Pointers to structures and arrays of structures

6. Basics of recursive data collections

2. Quiz

Arrays of pointers

• We only know that the number of columns is

stored in the cols variable and the number of

rows in the rows variable.

• We’re not going to attempt to allocate the array

in the following way:

 int *ptrtab = (int *) malloc(rows * cols * sizeof(int));

• If we want to access the element in column c

and row r, we would have to calculate the

pointer to the element as follows:

 ptrtab + (cols * r) + c

Arrays of pointers

Arrays of pointers

• This is how we do it:

 to avoid the inconvenience of skipping over the

subsequent rows, we’ll store the pointer to the

beginning of every row so we can reach each row

without any acrobatics. How do we store these

pointers? In the array, of course! We’ll call it the array

of rows; every row will have as many elements as

columns of the desired array;

 every element in the array of rows will be a pointer to

a separate row;

 we need one more pointer to point to the array of

rows – we call it ptrtab.

Arrays of pointers

Arrays of pointers

• This means that the type of ptrtab is “a pointer

to a pointer to int", which is denoted as “int **”

Arrays of pointers

• Firstly, the pointer returned by malloc surrender

is converted to type int ** and assigned to

ptrtab.

• Secondly, the elements of the array of rows are

pointers to the rows, so their type is int * and

hence, the size of the array is expressed as

sizeof (int *) multiplied by the number of rows.

Arrays of pointers

• Finally, we need to allocate memory for every

row and store the resulting pointer inside the

right element of the array of rows.

Arrays of pointers

• For example, if we want to assign 0 to the

element lying in row r, column c, we'll do it this

way:

Arrays of pointers

Arrays of pointers

• How does it work?

 the ptrtab[r] expression is interpreted as *(ptrtab + r),

which means the dereferencing of the element

pointing to the selected row;

 the pointer is dereferenced once more so the entire

indexing expression looks as follows:

• *(*(ptrtab + r) + c)

 and this is simply the desired

 value of type int.

Arrays of pointers

• The advantage of such arrays is that, unlike

ordinary arrays, every row may be of a different

length.

• It refers specifically to triangular matrices.

Arrays of pointers

• int rows = 5, r;

int **ptrab;

ptrtab = (int **) malloc (rows * sizeof (int *));

for (r = 0; r <rows; r++)

 ptrtab[r] = (int *) malloc (sizeof (int) * (r + 1))

Outline

1. Arrays vs. structures: different aggregates for

different purposes

1. Arrays of pointers as multidimensional arrays

2. Declaring arrays: traps and puzzles

3. The structures: why?

4. Declaring and initializing structures

5. Pointers to structures and arrays of structures

6. Basics of recursive data collections

2. Quiz

Some declarative traps

• In this way, we’ve declared a variable array

which is a 10-element array of pointers to data of

type int.

Some declarative traps

• And now let's look at a seemingly very similar,

but completely different, declaration.

• It declares array as a pointer to a 10-element

array of type int.

Some declarative traps

• The statement creates a variable array, which is

a pointer to a 10-element array whose

elements are pointers to ints.

Outline

1. Arrays vs. structures: different aggregates for

different purposes

1. Arrays of pointers as multidimensional arrays

2. Declaring arrays: traps and puzzles

3. The structures: why?

4. Declaring and initializing structures

5. Pointers to structures and arrays of structures

6. Basics of recursive data collections

2. Quiz

Structures – why do we need

them?

• Let's try to manipulate that array. For example,

suppose that the first registered student was Mr.

Bond (James Bond).

 strcpy(student_name[0],"Bond");

Structures – why do we need

them?

• We know that Mr. Bond spent three hours and

thirty minutes studying our course. We’ll denote

it in the following way:

 student_time[0] = 3.5;

Structures – why do we need

them?

• The primary objection is that the data regarding

the same object (a student) is dispersed

between three variables, although it should

logically exist as a consolidated unit.

• A structure contains any number of elements

of any type. Each of these elements is called a

field.

Structures – why do we need

them?

• This is the declaration of the structure:

Structures – why do we need

them?

• We should emphasize that the previous

declaration doesn't create a variable, but only

describes the structure we’re going to use in our

program.

• This declaration sets up a variable (a structured

variable) named stdnt.

Structures – why do we need

them?

• As the “C” language offers a specialized

indexing operator [] for arrays, we also have the

selection operator, designed for structures and

denoted as a single character . (dot).

• The priority of the selection operator is very high,

equal to the priority of the [] operator.

Structures – why do we need

them?

• This is a binary operator. Its left argument must

identify the structure while the right argument

must be the name of the field known in this

structure.

• Consequently, you can use both of these

selectors:

 stdnt.time = 1.5;

• and

 float t;

 t = stdnt.time;

Structures – why do we need

them?

• Virtually any data could be used as a structure's

field: scalars (including pointers), arrays and

also almost all of the structures. We say “almost”

because a structure cannot be a field of itself.

• Structures can be aggregated inside an array, so

if we want to declare an array consisting of

STUDENT structures:

Structures – why do we need

them?

• This means that if we want to select the time

field of the fourth stdnts' element, we write it as

follows:

 stdnts[3].time

• We’ve collected all these assignments which

have been performed for the three separate

arrays. Analyze them carefully:

 strcpy(stdnts[0].name, "Bond");

 stdnts[0].time = 3.5;

 stdnts[0].recent_chapter = 4;

Declaring the structures

• For the purposes of simplicity, we’ll use a simple

structure designed to store the date.

• we can write this declaration much more

compactly:

 struct DATE {

 int year,month,day;

 };

Declaring the structures

• The new variable would be declared, for

example, in this way:

 struct DATE DateOfBirth;

• We can use it to store Harry Potter's date of

birth:

 DateOfBirth.year = 1980;

 DateOfBirth.month = 7;

 DateOfBirth.day = 31;

• We can also use the structure tag to declare an

array of structures:

 struct DATE visits[100];

Declaring the structures

• We can defining the structure tag and declaring

any number of variables simultaneously in the

same statement, like this:

 struct DATE {

 int year, month, day;

} DateOfBirth, visits[100];

struct DATE current_date;

Declaring the structures

• We can also omit the tag and declare the

variables only:

 struct {

 int year, month, day;

 } the_date_of_the_end_of_the_world;

• In this case, however, determining the type of the

variable the_date_of_the_end_of_the_world (e.g. if we

want to use it with the sizeof operator) becomes

troublesome. Without a tag it has to be denoted as:

 sizeof(struct {int year, month, day;})

• We find it too complex and unreadable, compared to

sizeof(struct DATE).

Declaring the structures

• A structure could be a field inside another

structure.

 HarryPotter.last_visit.year = 2012;

 HarryPotter.last_visit.month = 12;

 HarryPotter.last_visit.day = 21;

Outline

1. Arrays vs. structures: different aggregates for

different purposes

1. Arrays of pointers as multidimensional arrays

2. Declaring arrays: traps and puzzles

3. The structures: why?

4. Declaring and initializing structures

5. Pointers to structures and arrays of structures

6. Basics of recursive data collections

2. Quiz

Structures – a few important rules

• A structure's field names may overlap with the

tag names, and this is generally not considered

a problem, although it may cause some difficulty

in reading and understanding the program.

Structures – a few important rules

• It may happen that a particular compiler doesn't

like it when a structure's tag name overlaps with

a variable's name.

Structures – a few important rules

• Two structures can contain fields with the

same names – the following snippet is correct

Initializing structures

• Structures can be initialized as early as at the

time of declaration. The structure's initiator is

enclosed in curly brackets and contains a list of

values assigned to the subsequent fields,

starting from the first.

Initializing structures

• This initiator is equivalent to the following

sequence of assignments:

 date.year = 2012;

 date.month = 12;

 date.day = 21;

Initializing structures

• The initiator of this form is functionally equivalent

to the following assignments:

 strcpy(he.name, "Bond");

 he.time = 3.5;

 he.recent_chapter = 4;

 he.last_visit.year = 2012;

 he.last_visit.month = 12;

 he.last_visit.day = 21;

Initializing structures

• Due to the completeness of the inner initializer, it

can be written in the following, simplified form:

 struct STUDENT he = { "Bond", 3.5, 4, 2012, 12, 21 };

• This type of simplification (omitting internal curly

braces) can also be applied in the following case

(with caution, though):

 struct STUDENT she = { "Mata Hari", 12., 12, { 2012 } };

 she.last_visit.month = 0;

 she.last_visit.day = 0;

Initializing structures

• What happens when we apply an “empty”

initializer?

• Here's the answer:

 strcpy(nobody.name, "");

 nobody.time = 0.0;

 nobody.recent_chapter = 0;

 nobody.last_visit.year = 0;

 nobody.last_visit.month = 0;

 nobody.last_visit.day = 0;

Outline

1. Arrays vs. structures: different aggregates for

different purposes

1. Arrays of pointers as multidimensional arrays

2. Declaring arrays: traps and puzzles

3. The structures: why?

4. Declaring and initializing structures

5. Pointers to structures and arrays of structures

6. Basics of recursive data collections

2. Quiz

Pointers to structures

• Let's declare a pointer to the structures of type

struct STUDENT.

• If we want to allocate memory for one structure,

we can do it in the following way:

 sptr = (struct STUDENT *) malloc(sizeof(struct

STUDENT));

Pointers to structures

• The sptr points to a piece of memory that can be

used as if it were a “regular” structure of type

struct STUDENT.

• The following dereference identifies the entire

structure:

 *sptr

• Unfortunately, an expression like the one below

is invalid:

 *sptr.time= 1.0;

Pointers to structures

• This error is caused by the very high priority of

the selection operator – it’s higher than the

priority of the dereference operator, so the entire

expression will be interpreted as follows:

 *(sptr.time)

• It forces us to take into account the mutual

arrangement of both these operators and to

write the expression with additional

parentheses:

 (*sptr).time

Pointers to structures

• This means that given form:

• is by definition equal to the form:

 (*pointer).field

Pointers to structures

• We can use this information to assign some

values to the fields of the newly allocated

structure:

 strcpy(sptr -> name, "Dobby");

 sptr -> time = 0.1;

 sptr -> recent_chapter = 0;

 sptr -> last_visit.year = 2002;

 sptr -> last_visit.month = 1;

 sptr -> last_visit.day = 1;

Unions

• Syntactically, they’re both very similar. You only

have to replace the keyword struct with union

and the whole declaration remains valid. The

real clue is hidden deeper – inside the

computer‘s memory.

Unions

• They both have two fields named a and b.

Accessing the fields is identical in both cases:

 Data1.a = 0;

Data2.b = 0;

Unions

• In a structure, all its fields are placed

successively. Every field has its own part of the

computer memory. In other words: each field is a

separate world and they don’t overlap. Modifying

the a field will leave the b field intact and vice

versa.

• This also means that the size of the structure is

not less than the total size of all its fields.

Unions

• In contrast, in a union, all its fields are placed in

the same memory location. This means that

the a and b fields share the same part of the

memory.

• This fact has at least one interesting implication:

the union’s initializer has to have one element.

• It means also that modifying the a field will

modify the b field immediately.

Unions

• The program

 will output

 two values:

 0 and 1.

Unions

Unions

• The Data union is equipped with two fields of

radically different types: int and float. As you

already know, these types use a completely

different method of internal representation.

Assigning the a field with the value of 1 won’t set

the b field with anything even close to 1.

Outline

1. Arrays vs. structures: different aggregates for

different purposes

1. Arrays of pointers as multidimensional arrays

2. Declaring arrays: traps and puzzles

3. The structures: why?

4. Declaring and initializing structures

5. Pointers to structures and arrays of structures

6. Basics of recursive data collections

2. Quiz

Structures + Pointers = Lists

• A structure cannot be a field of itself, but any of

the structure's fields can be a pointer to the

structure currently declared.

• This is a recursive declaration, as the entity

being declared refers to itself before the

declaration is completed.

Structures + Pointers = Lists

• The idea of a one-way linked list is based on the

observation that if we have a multitude of data

(e.g. integers), we can link them together (some

could say “aggregate them”), like beads on a

thread, and attach the thread to any steady

point.

Structures + Pointers = Lists

• We suggest you imagine something like this:

 the threaded elements are structures of the same

type;

 each of these structures will store an integer value

 we assume that every structure will have a kind of

hook which can “attach” to the next bead in the chain;

 the role of coupling will be played by one specific field

that can store a pointer to the next element inside the

chain;

 the thread has to be permanently attached so we

need a nail; we assign that role to the pointer variable

commonly called "head" or "list header".

Structures + Pointers = Lists

• Look again at the ELEMENT structure

declaration:

 a field named value will serve as storage for any

useful values;

 a field named next will be used to “attach” to the next

structure in the chain;

 the first structure in the chain is “attached” to a head

variable, declared as follows:

• struct ELEMENT *head;

 the last structure in the chain will be attached to

nothing, so we’ll assign the NULL pointer value to its

next field.

Structures + Pointers = Lists

• Let's imagine a thread with three beads on it

Structures + Pointers = Lists

Outline

1. Arrays vs. structures: different aggregates for

different purposes

1. Arrays of pointers as multidimensional arrays

2. Declaring arrays: traps and puzzles

3. The structures: why?

4. Declaring and initializing structures

5. Pointers to structures and arrays of structures

6. Basics of recursive data collections

2. Quiz

Quiz

Quiz

Quiz

Quiz

Quiz

Quiz

