Maciej Sobieraj

Lecture 8



Outline

1. Functions
1. Functions: why do we need them?

2. Our first function {:
3. Variables, parameters and results

4. Scalars as function parameters
2. Quiz

o




I | Why would we want to write
functions?

e Reason #1

= |t often happens that a particular piece of code is

repeated many times in your program. It's repeated r;::
either literally or only with some minor modifications o

consisting of the use of other variables in the same

algorithm. {:}




Why would we want to write
functions?

#include <stdio.h>

int main(void) {

printf("This computing enviroments uses:\n”);

printf("%d byte for chars",sizeof(char));
printf("%d bytes for shorts",sizeof(short int));

printf("%d bytes for ints",sizeof(int));
printf("%d bytes for longs",sizeof(long int));
printf("%d bytes for long longs",sizeof(long long int));

printf("%d bytes for shorts",sizeof(short int));
printf("%d bytes for floats",sizeof(float));

printf("%d bytes for doubles",sizeof(double));
printf("%d bytes for pointers",sizeof(int *));

return 0;




I | Why would we want to write
functions?

 Reason #2
* |t may happen that the algorithm you’re going to

Implement is so complex that the main function {::

begins to grow in an uncontrolled manner, and o,

suddenly you notice that you're having problems

simply navigating through it. {:}
O

et ih 4




I | Why would we want to write
functions?

e Reason #3

= |t often happens that the problem is so large and
complex that it cannot be assigned to a single
developer, and a team of developers have to work on
it. The problem has to be split between several
developers in a way that ensures their efficient and
seamless cooperation.




Outline

1. Functions
1. Functions: why do we need them?

2. Our first function ‘ef:
3. Variables, parameters and results

4. Scalars as function parameters
2. Quiz

o




I | What does the compiler need

* |If the compiler is analyzing your program and
encounters something that looks like a function
Invocation, it'll try to make sure that:

= the function you want to call is available;

= the parameters you've specified (or haven’t specified
at all) are consistent with what is expected for the
function;

= the return type of the function is compatible with the
type of targeting I|-value

NumberOfSheep = CountSheep();




I | What does the compiler need

« The compiler must have the following
information for each function you're going to
use: {:
= what is the name of the function? O

= how many parameters does the function expect and
of which types? {::}

= what is the function's return type?

« The compiler can derive information about the
functions from two sources:

= the declaration of the function

= the definition of the function. O \




I | Declaration vs. definition

* The declaration of a function is the part of the
code containing all three key pieces of
Information (name, parameters, type), but
doesn't contain the body of the function.

« Adefinition of a function is a part of the code

containing its full implementation (including the
body).

int CountSheep(void); /* declaration */

int CountSheep(void) { /* definition */
return ++SheepCounter;

}




Our first function

void hello(void) {
printf ("You've invoked me — what fun!\n");
return;

}

 The declaration of this function would be as
follows:
= void hello(void);

hello();

way:




I | How do we not invoke our
function?

« We mustn't invoke our function in the following
way:




How do we not invoke our
function?

* Invoking it like this is prohibited, too:




Function eventually invoked

* Here’s a complete program, ready to compile
and run, including both the function definition
and its invocation

#include <stdio.h>

void hello(void) {

printf ("You've invoked me —what fun!\n");
return;

}

int main(void) {
printf("We are about to invoke hello()'\n");
hello();
printf("We returned from hello()'\n");
return 0;

}




I | Function eventually invoked

* We had to change our code — it now looks like
this:
#include <stdio.h> {:
Int main(void) {
printf("We are about to invoke hello()'\n");
hello();

printf("We returned from hello()!\n");
return O;

o

}
void hello(void) {

printf ("You've invoked me — what funi\n");
return;




I | Function eventually invoked

« The compiler Is forced to guess all the traits of
the hello function before the compiler even
reads its declaration or definition. You should
expect the compiler to generate a warning
message and the implicit declaration will perform
Its deduction.

* The deduction is very simple — it assumes that
all entities of unknown types are ints. This
means that the compiler is convinced that thg§Sm
actual hello declaration looks as follows:

= int hello(void);




Function eventually invoked

« We should warn the compiler that the function
will be used and provide complete information
about it.

#include <stdio.h>
void hello(void);

int main(void) {
printf("We are about to invoke hello()!\n");
hello();
printf("We returned from hello()!\n");
return O;

}

void hello(void) {
printf ("You've invoked me — what fun!\n");
return;

}




I | return statement

* The return statement executed inside any
function causes immediate function
termination and a return to the invoker. {:

* |f the function is defined as void, then:
* the acceptable return statement looks like

return;

function’s block.




I | return statement

« This means that you can write the hello function
In the following way too:

void hello(void) {
printf ("You've invoked me — what funi\n");

}

* Note that more than one return statement may
exist in the function body.




return statement

* If the function type isn't specified as void, the

only acceptable form of return statement is as
follows

return expression;

= where the expression must provide the value of the
type matching the type of function; in this case using

the return statement is mandatory and you cannet
omit it in the function body.




Outline

1. Functions
1. Functions: why do we need them?

2. Our first function {:
3. Variables, parameters and results

4. Scalars as function parameters
2. Quiz

o




I | Functions and their local variables

* Function blocks and blocks in general can
contain variable declarations — as many as you
need.

* |If we declare a variable inside a block (e.g. a
function's block) the variable will be known and
recognized only inside that block and,
consequently, will not be known in any other part
of the program.

» The name will not interfere with other variabjggaie
with identical names defined inside other blopgNSs:




Functions and their local variables

#include <stdio.h>

void hello(void) {
inti;

for(i=0;i<2;i++)
printf ("You've invoked me — what fun!\n");

int main(void) {
inti;
printf("We are about to invoke hello()!\n");
for(i=0;i<3;i++)
hello();
printf("We returned from hello()!\n");
return O;

o

return;
}




Global variables

* |f the variable is declared outside of all the
blocks, it becomes a global variable.

* A global variable is accessible to all functions
In a source file.




Global variables

#include <stdio.h>
int global;

void fun(void) {
int local;

local = 2;
global++;
printf("fun: local=%d global=%d\n", local, global);
global++;

}

int main(void) {
int local;

local = 1;

global = 1;

printf("main: local=%d global=%d\n", local, global);
fun();

printf("main: local=%d global=%d\n", local, global);
return 0;

o




I | Global variables

* We can expect the following text to be sent to
the screen:
main: local=1 global=1 {:
fun: local=2 global=2 O
main: local=1 global=3




I | Function parameters

« The function parameter is a special kind of
local variable. It behaves like a local variable —
Its name isn’t known outside the function.

* |t differs from the local variable in two important
features:

= first, the parameter is not declared within the
function, but must be declared inside a pair of
parentheses after the function name (which meams

that the parameter declaration is a part of the fungdge
declaration);

void hello2(int times);




Function parameters

void hello2(int times);

* The times variable may be used inside the
function in exactly the same way as if it were a
local variable; this is called a formal parametey.

= second, a prototype of the function containing format
parameters forces us to invoke that function with a
list of expressions, and the number of expresstons

must be equal to the number of formal parametea
the prototype;




Function parameters

void hello2(int times);

the types of these expressions must be compatible {:
with the types of the corresponding formal O

parameters; each of these expressions is called an
actual parameter; {’:}

at the beginning of the invocation every formal
parameter is assigned the value of the
corresponding actual parameter.




Function parameters

* It clearly shows that these three invocations are
valid (they all deliver a value of type int to the
formal parameter)

int notmany = 5;

hello2(100); /* actual parameter is a literal */
hello2(notmany); /* actual parameter is a variable */
hello2(2 * notmany); /* actual parameter is an expression */




Function parameters

* We must not call the function hello2 in any of the
following ways

e

hello2(); /* too few actual parameters */ o
hello2(1,2); /* too many actual parameters */

hello2("Hey"); /* incompatible actual parameter */ {:}




I | Function parameters

+ Let's assume that the hello3 function has the
following declaration:
= void hello3(int i, float ),

 and has been invoked as follows:
* hello3(100, 3.14);

« The following assignments will be performed
implicitly and beyond our control:

= 1 =100;:




I | Function parameters

* The first format parameter is assigned with the
current value of the first actual parameter,
= f=3.14;

* The second formal parameter is assigned with
the current value of the second actual
parameter.

* The parameterized function may modify its own
behavior according to the parameter’s value.




Function parameters

The updated hello2 function body goes here:

If you invoke this function as follows:
* hello2(100);

the following assignment will take place
automatically:

= times = 100:;

times.




Function parameters

void hello2(int times) {
inti;
for(i=0;i < times; i++)
printf ("You've invoked me — what fun\n");
return;




I | Function results

* |If the function has been declared with a type
before its name, it must perform the return
statement equipped with an expression.




Function results

#include <math.h>
#include <stdio.h>

int main(void) {
floata, b, a sqgr, b sqr, c;

printf("A?\n");
scanf("%f", &a);

a sgqr=a”a;
printf("B?\n");
scanf("%f", &b);

b sqr=b * b;

c =sqrtla sqr+ b sqr);

printf("The length of the hypotenuse is: %f\n", c);

return O;

o




Function results

* The function won't be particularly advanced —
we expect it to:
= accept one parameter of type float; '{:

= square the value of the parameter and return it as the®
result.

= the result type is float (can you explain why?)

= we'll name our function square — it's good practice to
name functions using verbs O




Function results

float square(float param) {
float x_sqr;

X_sqr = param * param;
return x_sqr,;

}




Function results

« Of course, the function could be slightly
simplified:

float square(float param) {
return param * param;

}




Function results

#include <math.h>
#include <stdio.h>

float square(float param) {
return param * param;

}

int main(void) {
floata, b, a sqr, b sqr, c;

printf("A?\n");

scanf("%f", &a);

a_sqr = square(a);

printf("B?\n");

scanf("%f", &b);

b sqr = square(b);

c =sqrt(a sqr+ b sqr);

printf("The length of the hypotenuse is: %f\n", c);
return O;

o




I | Function results

* Note that a_sqr, b_sqr and c are used as
temporary containers only. We can remove
them.

#include <stdlib.h>
#include <math.h>
#include <stdio.h>

float square(float param) {
return = param * param;

}

int main(void) {
float a, b;

printf("A?\n");

scanf("%f", &a);

printf("B?\n");

scanf("%f", &b);

printf("The length of the hypotenuse is: %f\n",sqrt(square(a) + square(b)));
return 0;




Outline

1. Functions
1. Functions: why do we need them?

2. Our first function {:
3. Variables, parameters and results

4. Scalars as function parameters
2. Quiz

o




Function parameters that are
scalars

#include <stdio.h>

void function(int param) { {::
printf("I've received value %d\n", param);
}

o

int main(void) {
int variable = 111;

function(1000);
function(variable);
function(variable + 1000);
return O;




Function parameters that are
scalars

* We already know that actual parameter values
are assigned to formal parameters during
function invocation, which means that executing
the program will send the following text to the
screen:

I've received value 1000
I've received value 111
I've recelved value 1111




Function parameters that are
scalars

« What happens if the function changes the value
of the formal parameter? It's always possible.

#include <stdio.h>

void function(int param) {
printf("l've received value %d\n", param);
param-++;

}

int main(void) {
int variable = 111;

function(variable);
printf("variable %d\m", variable);
return O;

}




Function parameters that are
scalars

* The program will emit the following text:

I've received value 111
variable=111




Function parameters that are
scalars

« The actual parameter's value is copied into the
formal parameter and the relationship between
them definitely ends at this point.

* Any change of the formal parameter does not
affect the state of the actual parameter.

 This kind of cooperation between parameters is
known as a by-value parameter passing.




Function parameters that are
scalars

* We can deal with this limitation by using
pointers. This is how the scanf function works

when it has to get the value from the user and
assign it to a variable.

#include <stdio.h>

void functionx(int *ptr) {
“ptr = *ptr + 100;
}

int main(void) {
inti=100;
int “p = &i;

printf("i = %d\n", i);
functionx(p);
printf("i = %d\n", i);
return 0;




Function parameters that are
scalars

 Let's navigate through our program.
= we declare the | variable and initialize it with a value

of 100 g:

= we declare the p variable and initialize it with a pointe®
to the i variable




Function parameters that are
scalars

 Let's navigate through our program.
= we invoke functionx and pass the value of p to it;
= the value is copied to the ptr parameter '{:




Function parameters that are
scalars

 Let's navigate through our program.
= functionx exits
= the p variable hasn't changed its value
= the | variable has changed its value and it's now 200
= the output screen looks as follows

=100

.

o

|l
N
-
-




Function parameters that are
scalars

« We can simplify the main function in the
following way.

* The p pointer is completely unnecessary and we
can remove it. A pointer to i can be retrieved
using the & operator

int main(void) {
inti=100;

printf("i = %d\n", i);
functionx(&i);
printf("i = %d\n", i);
return O;




Function parameters that are
scalars

« We're going to write a function which increases
the value pointed to by its parameter.

void incr(int *value) {
(*value)++;

}

* Now we're ready to make use of our function:

Int main(void) {
Int var = 100;
Incr(&var);
printf("var = %d\n", var);
return O;




Outline

1. Functions
1. Functions: why do we need them?

2. Our first function {:
3. Variables, parameters and results

4. Scalars as function parameters
2. Quiz

o




What happens if you try to compile and run this program?

#include <stdio.h>
int add(int par) {

par

+= par;

return par;

}

int add2(int pl, int p2)
return pl + p2:

}

int main(veoid) {

int
var
var
var

var = 0;

= add2(2,4):

= add(var);

add2 (var, var)

printf ("%d",var) ;

return 0;

{

Quiz

O the program outputs 24
O the program outputs 48

O the program outputs 72




Quiz

What happens if you try to compile and run this program?

#include <stdio.h>
int add{int par) {
par 4= par;
return par;
}
int addZ(int pl, int p2) {
return pl + p2:
}
int main(void) {
int var = 0;

var = add2 (add(2),add(4)) :

var = add2 (var,var);
printf ("%d",var):

return 0;

O the program outputs 12
O the program outputs 24

O the program outputs 48




Quiz

What happens if you try to compile and run this program?

#include <stdio.h>

int f1 (int v) {
v *= v;
return v;

}

int f2 (int pl, int p2) {
return pl / p2;

}

int main(wvoid) {
int v = 0;
f1(f1(£f2(2,4))):
printf ("&d",v):

return 0O;

O the program outputs 6
O the program outputs 0

O the program outputs 8




Quiz

What happens if you try to compile and run this program?

#include <stdio.h>
int fun(int n) {
return n - 1;

}

int main(void) {
printf ("%d", fun (fun (fun (fun(fun(3)))))):
return 0;

O the program outputs -2
O the program outputs 0

O the program outputs -1




