
Maciej Sobieraj

Lecture 8

Outline

1. Functions

1. Functions: why do we need them?

2. Our first function

3. Variables, parameters and results

4. Scalars as function parameters

2. Quiz

Why would we want to write

functions?

• Reason #1

 It often happens that a particular piece of code is

repeated many times in your program. It’s repeated

either literally or only with some minor modifications

consisting of the use of other variables in the same

algorithm.

Why would we want to write

functions?

Why would we want to write

functions?

• Reason #2

 It may happen that the algorithm you’re going to

implement is so complex that the main function

begins to grow in an uncontrolled manner, and

suddenly you notice that you’re having problems

simply navigating through it.

Why would we want to write

functions?

• Reason #3

 It often happens that the problem is so large and

complex that it cannot be assigned to a single

developer, and a team of developers have to work on

it. The problem has to be split between several

developers in a way that ensures their efficient and

seamless cooperation.

Outline

1. Functions

1. Functions: why do we need them?

2. Our first function

3. Variables, parameters and results

4. Scalars as function parameters

2. Quiz

What does the compiler need

• If the compiler is analyzing your program and

encounters something that looks like a function

invocation, it’ll try to make sure that:

 the function you want to call is available;

 the parameters you've specified (or haven’t specified

at all) are consistent with what is expected for the

function;

 the return type of the function is compatible with the

type of targeting l-value

What does the compiler need

• The compiler must have the following

information for each function you’re going to

use:

 what is the name of the function?

 how many parameters does the function expect and

of which types?

 what is the function's return type?

• The compiler can derive information about the

functions from two sources:

 the declaration of the function

 the definition of the function.

Declaration vs. definition

• The declaration of a function is the part of the

code containing all three key pieces of

information (name, parameters, type), but

doesn't contain the body of the function.

• A definition of a function is a part of the code

containing its full implementation (including the

body).

Our first function

• The declaration of this function would be as

follows:

 void hello(void);

• We can invoke our new function in the following

way:

How do we not invoke our

function?

• We mustn't invoke our function in the following

way:

How do we not invoke our

function?

• Invoking it like this is prohibited, too:

Function eventually invoked

• Here’s a complete program, ready to compile

and run, including both the function definition

and its invocation

Function eventually invoked

• We had to change our code – it now looks like

this:

#include <stdio.h>

int main(void) {

 printf("We are about to invoke hello()!\n");

 hello();

 printf("We returned from hello()!\n");

 return 0;

}

void hello(void) {

 printf ("You've invoked me – what fun!\n");

 return;

}

Function eventually invoked

• The compiler is forced to guess all the traits of

the hello function before the compiler even

reads its declaration or definition. You should

expect the compiler to generate a warning

message and the implicit declaration will perform

its deduction.

• The deduction is very simple – it assumes that

all entities of unknown types are ints. This

means that the compiler is convinced that the

actual hello declaration looks as follows:

 int hello(void);

Function eventually invoked

• We should warn the compiler that the function

will be used and provide complete information

about it.

return statement

• The return statement executed inside any

function causes immediate function

termination and a return to the invoker.

• If the function is defined as void, then:

 the acceptable return statement looks like

 if the body doesn’t contain a return statement, it will

be implicitly added after the last instruction of the

function’s block.

return statement

• This means that you can write the hello function

in the following way too:

void hello(void) {

 printf ("You've invoked me – what fun!\n");

}

• Note that more than one return statement may

exist in the function body.

return statement

• If the function type isn't specified as void, the

only acceptable form of return statement is as

follows

 where the expression must provide the value of the

type matching the type of function; in this case using

the return statement is mandatory and you cannot

omit it in the function body.

Outline

1. Functions

1. Functions: why do we need them?

2. Our first function

3. Variables, parameters and results

4. Scalars as function parameters

2. Quiz

Functions and their local variables

• Function blocks and blocks in general can

contain variable declarations – as many as you

need.

• If we declare a variable inside a block (e.g. a

function's block) the variable will be known and

recognized only inside that block and,

consequently, will not be known in any other part

of the program.

• The name will not interfere with other variables

with identical names defined inside other blocks.

Functions and their local variables

Global variables

• If the variable is declared outside of all the

blocks, it becomes a global variable.

• A global variable is accessible to all functions

in a source file.

Global variables

Global variables

• We can expect the following text to be sent to

the screen:

main: local=1 global=1

fun: local=2 global=2

main: local=1 global=3

Function parameters

• The function parameter is a special kind of

local variable. It behaves like a local variable –

its name isn’t known outside the function.

• It differs from the local variable in two important

features:

 first, the parameter is not declared within the

function, but must be declared inside a pair of

parentheses after the function name (which means

that the parameter declaration is a part of the function

declaration);

Function parameters

• The times variable may be used inside the

function in exactly the same way as if it were a

local variable; this is called a formal parameter.

 second, a prototype of the function containing formal

parameters forces us to invoke that function with a

list of expressions, and the number of expressions

must be equal to the number of formal parameters in

the prototype;

Function parameters

 the types of these expressions must be compatible

with the types of the corresponding formal

parameters; each of these expressions is called an

actual parameter;

 at the beginning of the invocation every formal

parameter is assigned the value of the

corresponding actual parameter.

Function parameters

• It clearly shows that these three invocations are

valid (they all deliver a value of type int to the

formal parameter)

Function parameters

• We must not call the function hello2 in any of the

following ways

Function parameters

• Let’s assume that the hello3 function has the

following declaration:

 void hello3(int i, float f);

• and has been invoked as follows:

 hello3(100, 3.14);

• The following assignments will be performed

implicitly and beyond our control:

 i = 100;

Function parameters

• The first format parameter is assigned with the

current value of the first actual parameter;

 f = 3.14;

• The second formal parameter is assigned with

the current value of the second actual

parameter.

• The parameterized function may modify its own

behavior according to the parameter’s value.

Function parameters

• The updated hello2 function body goes here:

• If you invoke this function as follows:

 hello2(100);

• the following assignment will take place

automatically:

 times = 100;

• This causes the function to manifest its joy 100

times.

Function parameters

Function results

• If the function has been declared with a type

before its name, it must perform the return

statement equipped with an expression.

Function results

Function results

• The function won’t be particularly advanced –

we expect it to:

 accept one parameter of type float;

 square the value of the parameter and return it as the

result.

 the result type is float (can you explain why?)

 we’ll name our function square – it's good practice to

name functions using verbs

Function results

Function results

• Of course, the function could be slightly

simplified:

Function results

Function results

• Note that a_sqr, b_sqr and c are used as

temporary containers only. We can remove

them.

Outline

1. Functions

1. Functions: why do we need them?

2. Our first function

3. Variables, parameters and results

4. Scalars as function parameters

2. Quiz

Function parameters that are

scalars

Function parameters that are

scalars

• We already know that actual parameter values

are assigned to formal parameters during

function invocation, which means that executing

the program will send the following text to the

screen:

I've received value 1000

I've received value 111

I've received value 1111

Function parameters that are

scalars

• What happens if the function changes the value

of the formal parameter? It’s always possible.

Function parameters that are

scalars

• The program will emit the following text:

I've received value 111

variable=111

Function parameters that are

scalars

• The actual parameter's value is copied into the

formal parameter and the relationship between

them definitely ends at this point.

• Any change of the formal parameter does not

affect the state of the actual parameter.

• This kind of cooperation between parameters is

known as a by-value parameter passing.

Function parameters that are

scalars

• We can deal with this limitation by using

pointers. This is how the scanf function works

when it has to get the value from the user and

assign it to a variable.

Function parameters that are

scalars

• Let's navigate through our program.

 we declare the i variable and initialize it with a value

of 100

 we declare the p variable and initialize it with a pointer

to the i variable

Function parameters that are

scalars

• Let's navigate through our program.

 we invoke functionx and pass the value of p to it;

 the value is copied to the ptr parameter

Function parameters that are

scalars

• Let's navigate through our program.

 functionx exits

 the p variable hasn't changed its value

 the i variable has changed its value and it’s now 200

 the output screen looks as follows

Function parameters that are

scalars

• We can simplify the main function in the

following way.

• The p pointer is completely unnecessary and we

can remove it. A pointer to i can be retrieved

using the & operator

Function parameters that are

scalars

• We’re going to write a function which increases

the value pointed to by its parameter.

• Now we’re ready to make use of our function:
int main(void) {

 int var = 100;

 incr(&var);

 printf("var = %d\n", var);

 return 0;

}

Outline

1. Functions

1. Functions: why do we need them?

2. Our first function

3. Variables, parameters and results

4. Scalars as function parameters

2. Quiz

Quiz

Quiz

Quiz

Quiz

