
Maciej Sobieraj 

Lecture 9 



Outline 

1. Functions 

1. Structures and strings as function parameters 

2. Arrays as function parameters 

2. Quiz  

 

 

 

 

 

 

 

 



Function parameters that are 

structures 

• Structures are always passed by value – just 

like scalars. This means that the following 

program → will output the text: 1 A 



Function parameters that are 

structures 

• This function expects a pointer to the structure 



Function parameters 

• Arrays are always passed as a pointer to the 

first element. 

• It means that any change made to a “formal” 

array's element value is immediately reflected 

in an “actual” array. 



Function parameters 



Function parameters 

• This program will output two lines of text, coming 

from the contents of the array before and after 

invoking the mul2 function: 

 

 

     1 2 3 4 5 

     2 4 6 8 10 

 



Function parameters 

• Note that the formal parameter is declared as a 

pointer: 

 void mul2(int *arrptr) 

• while the actual parameter is the name of the 

array: 

 mul2 (array); 

 



Function parameters 

• Note – the part of the code used to print the 

content of the array is duplicated.  

• This is a great opportunity to make a new 

function and to invoke it, instead of performing 

loops.  

• The new function will receive the pointer as the 

actual parameter, but the formal parameter is 

declared differently than before. 



Function parameters 

• Pay attention to two important circumstances: 

 note how clear the main function becomes when we 

get rid of the repetitive code; the name of the new 

function makes its purpose clear; this is what we call 

self-commenting; the word “print” affects the reader's 

imagination more strongly than any long-winded 

comment; 

 we’ve used a slightly different technique for declaring 

the formal parameter ¬– it suggests that we’re going 

to deal with an array, not a regular pointer:  

• int a[]  



Function parameters 

• The function that sends the pointer to the array 

as a parameter can’t guess how many elements 

the array contains. An attempt to use the sizeof 

operator comes to nothing – we’ll only get the 

size of the pointer itself.  

• There are two possibilities: 

 the programmer only knows the size of the array (like 

in the programs cited here →, where we know that 

the array contains 5 elements) 

 information about the array's size is passed using 

another method (e.g. with the use of a different 

parameter) 



Function parameters 



Function parameters that are 

strings 

• A string is just a special type of array. We know 

that: 

 it’s an array of type char 

 the array content must end with an empty character ('\ 

0') 

• We’ll try to write our own implementation of the 

strlen function. 



Function parameters that are 

strings 

• We’ll also make the following assumptions: 

 we require a counter with an initial value of zero 

 we check the character pointed to by str – if it’s '\ 0', 

we'll leave the function returning the current counter 

value as the result 

 otherwise, we'll increment the counter and move the 

str pointer to the next character inside the string 

 we'll return to step 2 

• Note that steps 2 through 4 form a loop. The 

condition is checked at the beginning of the 

loop's body, so we’ll use the while loop for our 

algorithm. 



Function parameters that are 

strings 



Function parameters that are 

strings 

• Improvement #1: 

 The original code: 

• while(*str != '\0') ... 

 Knowing the assumptions the “C” language makes 

regarding true and false values, we can shorten the 

condition and encode it in the following way: 

• while(*str) ... 

 



Function parameters that are 

strings 

• Improvement #1: 

 

 



Function parameters that are 

strings 

• Improvement #2: 

 If we take into account the priorities of the * and ++ 

operators, we'll come to the conclusion that the 

condition and the body of the while loop: 

• while(*str) { 

             counter++; 

             str++; 

         } 

 may be encoded in a much more comprehensive form  

 

 



Function parameters that are 

strings 

• Improvement #2: 

 

 



Function parameters that are 

strings 

• Improvement #3: 

 Try to see the following interesting dependency: 

• initialization: counter = 0 

• checking: *str++ 

• modifying: counter++ 

 Does it remind you of anything? 

 

 



Function parameters that are 

strings 

• Improvement #3: 

 

 



Function parameters that are 

strings 

• Improvement #4: 

 Note the redundancy – we increment two dependent 

values (counter and pointer). We’ll try to simplify our 

algorithm and increase one variable. The first option 

will increment the counter only 

 



Function parameters that are 

strings 

• Improvement #4: 

 



Function parameters that are 

strings 

• Improvement #5: 

 Now we’ll increment the pointer and remove the 

counter from the code completely. We’ll need a 

second pointer, though, which will be responsible for 

pointing to the beginning of the string 



Function parameters that are 

strings 

• Improvement #5: 



Function parameters that are 

strings 

• Now we’re going to implement our version of the 

strcpy function. The original function has the 

following prototype: 

 char *strcpy(char *destination, char *source); 

• The function copies all the characters from the 

string pointed to by source into the string pointed 

to by destination and returns the destination 

pointer as the result. 



Function parameters that are 

strings 

• We can describe the algorithm in the following 

way: 

 store the destination pointer in the res variable 

 copy one character from the char pointed to by 

source to the char pointed to by destination 

 check if the copied char was the empty char; if yes, 

exit the function and return the res variable as the 

function result; otherwise, increase both source and 

destination pointers 

 return to step #2 



Function parameters that are 

strings 



Function parameters that are 

strings 

• The first modification is based on an interesting 

property of the = operator.  

• The assignment operator sets its left argument 

with a value of the right argument, but also 

returns the value which has been assigned 

already.  

• The value of the 2+2 expression is 4, and in the 

same way the value of the expression 

 i = 2 * 3 

    

   is 6.  

 



Function parameters that are 

strings 

• This feature of the = operator is often used by 

expressions similar to the following one 

 i = j = k = 0; 

• which should be interpreted as follows 

 i = (j = (k = 0)); 

• and which will result in the substitution of zero 

into the variables k, j and i (in that order), which 

is obviously more elegant than: 

k = 0; 

 j = 0; 

 i = 0; 



Function parameters that are 

strings 



Function parameters that are 

strings 

 

 

 

 

 

• Here’s a small code fragment to test it: 

char str1[10] = "not so"; 

char str2[10] = "best test"; 

mystrcpy(str1, str2);  

 



Function parameters that are 

strings 

• We would even go as far as to say that there’s 

no way of writing it in a more condensed way. 



Function parameters that are 

strings 



Outline 

1. Functions 

1. Structures and strings as function parameters 

2. Arrays as function parameters 

2. Quiz  

 

 

 

 

 

 

 

 



Function parameters 

• Function parameters which are 

multidimensional arrays 

• As you already know, multidimensional arrays 

may exist: 

 in a true and pure form when they’re declared with a 

complete set of dimensions, like this: 

• int array[3][3]; 

which creates an array of nine elements arranged in   

three rows and three columns; 



Function parameters 

• As you already know, multidimensional arrays 

may exist: 

 as an array of pointers, i.e. as the vector which 

contains pointers to the rows of the array and is 

declared like this: 

• int *ptrarr[3]; 

 Although references to elements of both arrays are 

syntactically identical and look like this: 

• array[2][2] = ptrarr[2][2]; 

 they differ significantly in terms of semantics.  

 



Function parameters 

• We have a simple main function, containing a 

declaration of a small 2-dimensional array 



Function parameters 

• We’ll design the skeleton of this function, 

neglecting completely the way in which the 

formal parameter has to be declared and 

replacing it with three question marks. We only 

assume that the formal parameter’s name will be 

t 

• We’d like to invoke this function as follows: 

 printarr(arr); 



Function parameters 



Function parameters 

• Let's analyze how the printarr function operates 

on the t array. We assume that we want to reach 

the element t[1][1]. 

• So: 

 we have to “skip” the whole first row of the t array to 

get to the beginning of the second row; 

 once in the second, row we must “jump” to the 

second element. 

 



Function parameters 

• Question: To successfully go through the steps described above, do 

we need to know how many rows the array contains? 

• Answer: No, we don't, because when we want to “jump” to the 

beginning of the row number x, and so we don't care about how 

many rows exist in the array. 

 

• Question: To successfully go through the steps described above, do 

we need to know how many columns the array contains (that is, 

how many elements exist in each row)? 

• Answer: Yes, because without this information we won't be able to 

skip x-1 lines; we need to know how long each row is. 

 



Function parameters 

• The declaration is invalid, because t is not a 

pointer to an array of pointers, but a pointer to a 

real array. 



Function parameters 

• The following declaration is prohibited too.  

• There’s a suggestion that t is a two-dimensional 

array, but the compiler doesn’t know how many 

rows it contains 



Function parameters 

• This is good, although we’ve now provided more 

information than the compiler really needs. The 

information stating that t has three rows is not 

useful to the compiler at all. 



Function parameters 

• This means that a form of the declaration which 

is both acceptable and sufficient goes as 

follows: 



Function parameters 



Function parameters 



Function parameters 

• In this case, no difficulty arises in the 

declaration. It may take one of the following two 

forms: 

void printarrptr(int *t[]); 

void printarrptr(int **t); 

 



Function parameters 



Outline 

1. Functions 

1. Structures and strings as function parameters 

2. Arrays as function parameters 

2. Quiz  

 

 

 

 

 

 

 

 



Quiz 



Quiz 



Quiz 



Quiz 


