
Maciej Sobieraj

Lecture 10

Outline

1. Functions

1. Parameterizing the main function

2. The basics of disjoint compilation

3. Examples

2. Quiz

Parameterizing the main function

• So far, the main function has appeared in our

programs only as a parameterless one; that is,

declared with the following prototype.

• This way of declaring the main function isn't

used often, because we rarely write programs

which don't benefit from the possibility of

retrieving some information from a user at the

time of startup.

Parameterizing the main function

• If you've ever used, for example, the dir

command in the Windows console environment

or the ls command in the Unix console

environment, you may have noticed that these

commands can be issued either with or without

arguments.

Parameterizing the main function

Parameterizing the main function

Parameterizing the main function

• How can it be that the arguments supplied in the

command line can be retrieved and interpreted

by the program? The mechanism for transferring

command-line arguments to the running

program is integrated in the main function, and

to take effect, the main function must be

declared in a special way

Parameterizing the main function

• Now, let's decipher the hidden meaning of the names

and their purposes:

 argc (argument counter): contains the number of arguments

passed on to the program plus one; this means that a program

run without any arguments will have an argc parameter value

equal to 1

 argv (argument values): an array of pointers to strings

containing the arguments supplied to the program; they’re stored

in the following way:

• argv[0] contains the name of the running program

• argv[1] contains the string passed to the program as the first

argument

• argv[n] contains the string passed to the program as the n-th

argument

Parameterizing the main function

• Let’s write a simple code whose task will be to

demonstrate the mechanism of passing the

arguments on to the main function. It’ll print all of

its arguments in one column.

Parameterizing the main function

• If you put this program in a file named args.c

and then compile it, you’ll get an executable file

named (probably) args.exe (in Windows) or args

(in a Unix environment).

Parameterizing the main function

Parameterizing the main function

Parameterizing the main function

Parameterizing the main function

Outline

1. Functions

1. Parameterizing the main function

2. The basics of disjoint compilation

3. Examples

2. Quiz

Disjoint compilation: why?

• Let's imagine that you, as good a programmer

as you are, decide to write an incredibly complex

program, together with your friend. This program

is intended to get an int number from the user

and calculate the factorial of that number.

Factorials and how to count them

Factorials and how to count them

• Let's try to rewrite the code in a somewhat

different way.

• The factorial is calculated “backwards”

Factorials and how to count them

• If your friend is a fan of mysterious coding, he

could hide his intentions more effectively by

writing something like this

Factorials and how to count them

• Now’s a good opportunity to talk about a

programming technique called recursion.

Factorials and how to count them

• Looking at the this reasoning, we see that:

 n! = 1 when n == 1

n! = (n – 1)! * n when n > 1

Factorials and how to count them

• Can you see it? The factorial function invokes

itself. This is exactly what we call a recursion.

A new operator: a three-argument

one

• This operator is highly original, because it

requires three arguments.

A new operator: a three-argument

one

• This operator works as follows:

 it calculates the value of expression1

 if the value calculated is a non-zero, the operator

returns the value of expression2, neglecting

completely expression3

 if the value calculated in step 1 is zero, the operator

returns the value of expression3, omitting

expression2.

A new operator: a three-argument

one

• This means that the result of the following

expression:

 i = i > 0 ? 1 : 0;

• will be calculated in the following way:

 variable i will be assigned a 1 if its previous value was

greater than zero, and a 0 otherwise.

A new operator: a three-argument

one

 i = i > 0 ? 1 : 0;

• Note that we can achieve the same effect using

a conditional statement:

 if(i > 0)

 i = 1;

else

 i = 0

• This is somewhat more extensive, although it’s

undeniably more readable at the same time.

Back to the disjoint compilation

• We can include it in the file factorial.c.

Back to the disjoint compilation

• Each author of a piece code, who is planning to

share their work results with other programmers,

usually prepares at least two source files:

 the first file contains the source code (in our case

it’s factorial.c)

 the second file contains the declarations (not

definitions!) of all the entities (symbols, types,

variables, functions) intended to be shared with

others; this file is called a header file and its name

should end with the suffix .h (in our case it would be

factorial.h)

Back to the disjoint compilation

Back to the disjoint compilation

• Your friend should run the editor once more and

create a file named factorial.h.

• Here’s a new word: extern (external). This is a

keyword, often called an attribute, which can be

used along with the declarations of functions

and variables. Its presence indicates that the

function/variable described in this declaration is

defined in a different source file.

Back to the disjoint compilation

• Of course, you can add the prototype directly

into the source file program.c, but the header

files eliminate the need to do so.

• You can also omit the parameter names in the

prototype, as you’re obliged only to specify their

types. This means that we can simplify the

declaration to the following form:

 extern int factorial(int);

Back to the disjoint compilation

• Now your friend sends you both files: the source (.c) and

the header (.h). Then you have to make the following two

amendments:

 add a #include directive to inform the preprocessor that it should

analyze the new header files

 encode the correct invocation to the factorial() function.

• As you can see, the purpose of a header file can be

twofold:

 firstly, the compiler finds out how to compile the external function

invocation;

 secondly, the programmer can learn how to use the functions in

the program.

Back to the disjoint compilation

• The header is often supplemented with a few

comments documenting the purpose of the file.

Your friend has already done it, so the final

version of the factorial.h file looks as follows:

Back to the disjoint compilation

• Here’s the program.c file

Back to the disjoint compilation

• You’re accustomed to using the #include

directive in this form:

 #include <file.h>

• but something new has appeared:

 #include "file.h"

• It's not a mistake.

Back to the disjoint compilation

• Here’s the importance of this duality:

 if the file name is surrounded by angle brackets < >,

it means that the preprocessor should look for the

included files in the standard locations; in Unix

environments, these locations are usually placed

inside the /usr/include directory (the name speaks for

itself);

 if the file name is surrounded by quotes " ", it means

that the preprocessor should look for the included file

in the same directory where the original file

processed by the preprocessor was located.

Outline

1. Functions

1. Parameterizing the main function

2. The basics of disjoint compilation

3. Examples

2. Quiz

Example 1

• Write a program that prints two triangles: one is

a normal triangle consisting of backslashes and

the other is a Floyd's triangle.

• Remember to escape the backslash with a

backslash (not a play on words!).

• A Floyd's triangle consisting of numbers in

consecutive order: in the first row, we have only

one number: 1; in the second row, two numbers:

2 3; in the third row: 4 5 6 and so on

Example 1

Example 1

Example 1

Example 1

Example 1

Example 1

Example 2

• Write a program that allows the user to pass the

parameters to be executed and compute the

results of some mathematical operations.

• Your program should support the following

operations:

 add

 sub

 mul

Example 2

• All operations require an additional two

arguments. Some examples of program calls

inlude:

 program.exe add 1 3

 program.exe sub 2 3

 program.exe mul 2 5

• When there are no parameters, the parameters

contain the wrong numbers or a parameter is

invalid, the program should print the message:

"Wrong parameters"

Example 2

Example 2

Example 3

• Write a function that computes the square of a

given floating-point number and returns its

value.

• Separate the declaration of the function from its

full definition.

Example 3

Example 4

• Write a function that checks whether or not a

given string is a valid IP address (in human-

readable form, of course).

• This function should return 1 if the address is

valid, and 0 if not. Your function should check if:

there are 4 parts in the string, separated by dots;

each part contains only digits, each number is in

the range of 0 to 255, inclusive.

• For converting string fragments to integer values

you can use the strtol, atoi or sscanf functions.

Example 4

Example 4

Example 4

Example 4

Example 4

Example 4

Example 5

• Write a function that checks which of two given

matrices is greater. To simplify the function

parameter list, you can assume that both

matrices are equal in size and are square. This

function should return:

 1 if the first matrix is greater than the second;

 -1 if the first matrix is smaller than the second;

 0 if both matrices are equal - this means they have

exactly the same values.

Example 5

• For this task, we assume that a matrix is smaller

than another matrix when the first element which

is different is smaller in that matrix.

• We analyze matrices from left to right and from

top to bottom.

Example 5

Example 5

Example 5

Outline

1. Functions

1. Parameterizing the main function

2. The basics of disjoint compilation

3. Examples

2. Quiz

Quiz

Quiz

