
Maciej Sobieraj

Lecture 11

Outline

1. Connecting to the real world: files and streams

1. File systems: definitions and conventions

2. Introduction to files and streams

3. Opening streams

4. Pre-opened streams

5. Closing the stream and error handling

2. Quiz

Files: containers for data

• One of the most common issues in a developer's

job is to process data stored in files. Imagine a

program that sorts 20 numbers and the user of

this program enters these twenty numbers

directly from the keyboard.

• Now imagine the same task when there are

20,000 numbers to be sorted – there’s no user

who is able to enter these numbers without a

mistake.

Names of files

• Different operating systems can treat files

differently. For example, Windows uses a

different naming convention than Unix/Linux

systems.

Names of files

• In addition, Unix system file names are case

sensitive, while Windows systems store the

cases of letters used in the file name, but don’t

distinguish their cases at all.

• This means that these two strings → describe

two different files in Unix systems, but are the

same name of just one file in Windows systems.

Names of files

• Suppose that we’re interested in a particular file

located in the dir directory, named file.

• Suppose also that we want to assign a string

containing the name of the file. In the Unix

system it would look as follows

Names of files

• But if you try to code it for the Windows system:

 char *name = "c:\dir\file";

• You should expect an unpleasant surprise: either

the compiler will reproach you or the program

will execute, surprisingly, as if the file name has

been distorted in a strange way.

• The “C” language uses the “\” as an escape

character

Outline

1. Connecting to the real world: files and streams

1. File systems: definitions and conventions

2. Introduction to files and streams

3. Opening streams

4. Pre-opened streams

5. Closing the stream and error handling

2. Quiz

Stream: a file abstraction

• Any program written in the “C” language does

not communicate with the files directly, but

through an abstract entity called a stream.

• The programmer, having a rich set of functions

defined mainly in the header file stdio.h, can

perform certain operations on the stream which

affect the real files using mechanisms

contained in the operating system kernel.

Stream: a file abstraction

• Operations performed with the abstract stream

reflect the activities related to the physical file.

• To connect (bind) the stream with the file, you

need to perform an explicit operation.

• The operation of connecting the stream with a

file is called opening the file, while

disconnecting this link is named closing the file.

What can we do with a stream?

• The opening of the stream is associated with the

file and should also declare the manner in which

the stream will be processed. This declaration is

called an open mode.

• There are two basic operations performed on

the stream:

 read from the stream: portions of data are retrieved

from the file and placed in a memory area managed

by the program (e.g. a variable);

 write to the stream: portions of data from the memory

(e.g. a variable) are transferred to a file.

How can we open a stream?

• There are three basic modes used to open the

stream:

 read mode: a stream opened in this mode allows

reading operations only – trying to write to the stream

will cause a runtime error;

 write mode: a stream opened in this mode allows

writing operations only – attempting to read the

stream will cause a runtime error;

 update mode: a stream opened in this mode allows

both writing and reading.

How can we open a stream?

• The stream behaves almost like a tape

recorder. When you read something from a

stream, a virtual head moves over the stream

according to the number of bytes transferred

from the stream.

How do we represent a stream in

the program?

• The “C” language standard assumes that every

programming environment should guarantee the

existence of a type named FILE, which is used

to represent streams in the program.

• The FILE type is defined inside the stdio.h

header file. Any program using a stream needs

to include this file.

Binary streams vs text streams

• Due to the type of the stream's content, all

streams are divided into text and binary

streams.

• The former are structured in lines; that is, they

contain typographical characters (letters, digits,

punctuation, etc.) arranged in rows (lines).

• This file is written (or read) mostly character by

character or line by line.

Binary streams vs text streams

• The library functions are responsible for reading

and writing characters to and from the stream. It

happens in the following way:

 when the stream is open, it should be advised that

the data in the associated file is be processed as text;

 while reading/writing lines from/to the associated file,

a process called the translation of newline

characters occurs: when you read a line from the file,

every pair of \r\n characters is replaced with a single

\n character.

Outline

1. Connecting to the real world: files and streams

1. File systems: definitions and conventions

2. Introduction to files and streams

3. Opening streams

4. Pre-opened streams

5. Closing the stream and error handling

2. Quiz

fopen() function

• The opening of the stream is performed by a

function of the following prototype

 the name of the function comes from the words "file

open";

 if the opening is successful, the function returns a

pointer to a newly created variable of type FILE,

otherwise it returns NULL, which can be easily used

to validate the invocation;

fopen() function

 the first parameter of the function specifies the name

of the file name to be associated with the stream. The

name must be written according to the conventions

applicable in a particular operating system;

 the second parameter specifies the open mode used

for the stream. It is described by a sequence of

characters and each of them has its own special

meaning;

 the opening must be the very first operation

performed on the stream

Open modes: r

• “r” open mode: read

 the stream will be opened in “read” mode;

 the file associated with the stream must exist and has

to be readable, otherwise the fopen function fails.

Open modes: w

• “w” open mode: write

 the stream will be opened in “write” mode;

 the file associated with the stream doesn't need to

exist; if it doesn't exist it will be created; if it exists it

will be truncated to the length of zero (erased); if

creation isn't possible (e.g. due to system

permissions) the fopen function fails.

Open modes: a

• The “a” open mode: append

 the stream will be opened in “append” mode;

 the file associated with the stream doesn't need to

exist; if it doesn't exist, it will be created; if it does

exist, the virtual recording head will be set to the end

of the file (the previous content of the file remains

untouched).

Open modes: r+

• The “r+” open mode: read and update

 the stream will be opened in “read and update” mode;

 the file associated with the stream must exist and has

to be writeable, otherwise the fopen function fails;

 both read and write operations are allowed for the

stream.

Open modes: w+

• The “w+” open mode: write and update

 the stream will be opened in “write and update” mode;

 the file associated with the stream doesn't need to

exist; if it doesn't exist it will be created; the previous

content of the file is discarded (the file is truncated to

zero length);

 both read and write operations are allowed for the

stream.

Specifying text and binary modes

• If the letter b is at the end of the mode string, it

means that the stream is to be opened in binary

mode. The default behavior when no binary/text

mode specifier is used is to open the stream in

text mode.

• Some compilers can specify that if the mode

string ends with the letter t, the stream is opened

in text mode. Also, opening a file in text mode is

necessary for programs running on Windows

systems.

Specifying text and binary modes

Opening the stream: an example

• Imagine that we want to develop a program that

reads the file named:

 c:\users\user\Desktop\file.txt

Outline

1. Connecting to the real world: files and streams

1. File systems: definitions and conventions

2. Introduction to files and streams

3. Opening streams

4. Pre-opened streams

5. Closing the stream and error handling

2. Quiz

fopen() function

• Any stream operation must be preceded by the

fopen() function invocation

• There are three well-defined exceptions to this

rule. When our program starts, three streams

are already opened and don't require any extra

preparation.

• Program can use these streams if it contains the

following directive:

 #include <stdio.h>

stdin stream

• stdin (standard input);

• the stdin stream is normally associated with the

keyboard, pre-opened for reading and

regarded as the primary data source of running

programs;

• the scanf function reads the data from stdin by

default.

stdout stream

• stdout (standard output);

• the stdout stream is normally associated with the

screen, pre-opened for writing, regarded as the

primary target for outputting data by the running

program;

• the printf function outputs the data to the stdout

stream.

stderr stream

• stderr (standard error output);

• the stderr stream is normally associated with the

screen, pre-opened for writing, regarded as the

primary place where the running program should

send information on the errors encountered

during its work;

• we haven't shown you any function used to send

the data to this stream yet (we’ll do it soon, we

promise).

Outline

1. Connecting to the real world: files and streams

1. File systems: definitions and conventions

2. Introduction to files and streams

3. Opening streams

4. Pre-opened streams

5. Closing the stream and error handling

2. Quiz

fclose() function

• The last operation performed on a stream

should be the closing. This action is performed

by a function with the following prototype:

• the function returns 0 on success or a value

identified by the symbol EOF otherwise (the

EOF symbol is declared in the stdio.h file and

represents a value equal to -1; its name comes

from the term End Of File).

fclose() function

• If we would like to close the stream opened in

the previous example, we need to invoke the

fclose function as follows:

• Upon execution of fclose, the stream is no

longer associated with any file, and any attempt

to perform an operation on it (except fopen) will

fail.

The errno variable

• The definition of the errno variable (the name

comes from the phrase “error number”) is

located in the errno.h header file and it look as

follows:

• By definition, the execution of any function

operating on a stream sets the errno variable,

with the error code identifying the reason for the

failure.

The errno variable

• The value of the errno variable can be

compared with one of the predefined symbolic

constants (also defined in the errno.h file), which

provide a basis for determining the actual

reason for the error.

The errno variable

The errno variable

The errno variable

• Fortunately, there’s a function that can

dramatically simplify error-handling code.

• It’s called strerror, its prototype is located in the

string.h file.

• Now we can simplify our code in the following

way:
 FILE *file = fopen("c:\\file.txt","rt");

 if(file == NULL)

 printf("File could not be opened: %s\n",strerror(errno));

Outline

1. Connecting to the real world: files and streams

1. File systems: definitions and conventions

2. Introduction to files and streams

3. Opening streams

4. Pre-opened streams

5. Closing the stream and error handling

2. Quiz

Quiz

Quiz

Quiz

