
Maciej Sobieraj

Lecture 12

Outline

1. Connecting to the real world: files and streams

1. Reading from the stream

2. Writing to the stream

3. Dealing with the stream's position

2. Quiz

fgetc() function

• the function name comes from the words file get

character;

• the function expects one parameter of type FILE

*; the parameter must be a pointer to a stream

opened for reading or updating;

• the function attempts to read one character

(byte) from the stream identified by the

parameter; if possible, the function returns the

code of the retrieved character as its result

fgetc() function

• if the attempt fails (e.g. because the current file

position is already located after the last

character in the file), fgetc returns the value of

EOF (-1) and the file position is not changed;

• the function might be used for reading

characters from a text file as well as reading

bytes from a binary file.

fgetc() function

• There’s an additional function with the following

prototype:

 int getchar(void);

• and it causes the same effects as the following

invocation:

 fgetc(stdin);

• The first function is used for reading a single

character from the stdin stream.

fgetc() function

• fgetc() function: reading one character from the

stream

fgetc() function

• fgetc() function: reading one character from the

stream

fgets() function

• fgets() function: reading one string from the

stream

• the function name is from the words file get

string;

fgets() function

• fgets() function: reading one string from the

stream

• the function expects the following three

parameters:

 str: a pointer to a string in which fgets will store one

line taken from the stream;

 maxsize: the maximum number of characters that

can be safely stored inside the str;

 stream: a pointer to the stream opened for reading

or updating;

fgets() function

• the function attempts to read one line of text from the

stream; if it succeeds, the function stores at most

maxsize characters in the string pointed to by str; if the

file contains lines of a greater length, they will be read

part by part;

• if the reading is successful, the function returns the

value of the str parameter, and the current position of

the file is moved to the place after the last retrieved

character;

• otherwise the function returns NULL as a result and the

current file position is not changed.

fgets() function

• There’s an additional function with the following

prototype:

 char* gets(char *str);

• which causes the same effects as the following

invocation:

 fgets(str, INT_MAX, stdin);

• where INT_MAX is a symbolic constant

representing the maximum value of type int.

fgets() function

fread() function

• fread() function: reading bytes from the

stream

• the function name derives from the words file read;

• the function expects the following four parameters:

 mem: a pointer to a memory in which fread will store a portion

of bytes read from the stream;

 size: the size (in bytes) of the portion to be read;

 count: the number of portions to be read;

 stream: a pointer to the stream opened for reading or updating;

fread() function

• fread() function: reading bytes from the

stream

• the function attempts to read size * count bytes from the

stream; if it succeeds, the function stores the read bytes

in the memory pointed to by mem;

• the function returns the number of successfully read

portions; it may, but doesn’t have to, be equal to the

count value; a value of 0 says that the function was

unable to read any portion; the current position of the file

is moved to the place after the last read byte.

fread() function

• fread uses two parameters to specify the size of

the data to read: size and count. How do we

deal with it?

• Suppose that we want to retrieve the value from the

input stream and store the bytes in the number variable.

The following declarations apply:

 int number;

FILE *input;

• The reading could be performed in two equivalent ways:

 fread(&number, sizeof(int), 1, input);

fread(&number, 1, sizeof(int), input);

fread() function

• In the first case, fread will read one portion of

sizeof(int) size.

• In the second case, fread will read sizeof(int)

portions of 1 byte each.

• In both cases, the fread attempts to read

sizeof(int) bytes, but the results returned by the

function will differ. Since fread returns the

number of correctly read portions, it will be equal

to 1 in the first case and to sizeof (int) in the

second, as long as everything is correct.

fread() function

fscanf() function

• We need a function that can read a string

representing any value and convert it directly to

internal representation.

• Such a function exists and we’ve used it already,

but in a form that allowed us to read the data

from the stdin stream only.

 int scanf(char * format, ...);

fscanf() function

• fscanf() function: formatted reading from the

stream

• This function expects the following parameters:

 stream: a pointer to the stream opened for reading

or updating;

 format: a pointer to a string describing what data

should be read from the stream;

 ... : a list of pointers to variables to be assigned

with values read from the data stream.

fscanf() function

• The function returns the number of values

correctly read from the stream.

• The invocation like this:

 scanf("%d", &number);

• is the same as this:

 fscanf(stdin, "%d", &number);

fscanf() function

fscanf() function

Outline

1. Connecting to the real world: files and streams

1. Reading from the stream

2. Writing to the stream

3. Dealing with the stream's position

2. Quiz

fputc() function

• fputc() function: writing one character to the

stream

• the function name comes from the words file put

character;

• the function expects two parameters:

 chr: a code of the character (or the character itself)

to be output to the stream;

 stream: a pointer to the stream opened for writing or

updating;

fputc() function

• if the function succeeds, it returns the chr character

code as its result; it will always be a number between 0

and 255; the current file position moves one byte toward

the end of the file;

• if the function fails (e.g. because of insufficient disk

space), fputc returns the value of EOF (-1) and the file

position is not changed;

• this function can be used for writing characters to a text

file or bytes to a binary file.

fputc() function

• There's an additional function with the following

prototype:

 int putchar (int chr);

• which works exactly in the same way as:

 fputc(chr, stdout);

• and is used for writing one character/byte to the

stdout stream.

fputc() function

fputc() function

fputs() function

• fputs() function: writing a string to the

stream

• the function name derives from the words file put string

• the function expects two parameters:

• string: a pointer to the string to be written to the

stream; note: the function will not implicitly add a \n

character at the end of the string (in contrast to puts);

• stream: a pointer to the stream opened for writing or

updating

fputs() function

• the function attempts to write the content of the string

to the stream

• if the function is successful, it returns a non-negative

number and the current position of the file is moved

towards the end of the file

• in the event of an error the function returns EOF as a

result; the current file position is unchanged;

• the function is definitely not intended to write data to

binary files as it is not possible to write a byte of value 0

fputs() function

• Here is a function (you already know it) with the

following prototype:

 int puts(char *string);

which is an equivalent of:

 fputs(string, stdout);

fputs() function

fputs() function

fwrite() function

• fwrite() function: writing bytes to the stream

• the function name comes from the words file write;

• the function expects four parameters:

 mem: a pointer to the memory area to be written to the stream;

 size: the size (in bytes) of one memory portion being written;

 count: the number of portions intended to be written;

 stream: a pointer to the stream opened for writing or updating;

fwrite() function

• the function attempts to write (size * count) bytes from

mem to the stream;

• the function returns the number of successfully (actually)

written portions and the current position of the file is

moved toward the end of the file; the result may differ

from the count value, due to some errors preventing

successful writing;

• the function is ideal for writing to binary files, but you can

use it to create text files too if you provide the

appropriate handling of the endline characters.

fwrite() function

fwrite() function

fprintf() function

• fprintf() function: formatted writing to the

stream

• stream: a pointer to the stream opened for

writing or updating;

• format: a pointer to a string describing the data

to be written to the stream;

fprintf() function

• ...: a list of expressions whose values will be

converted into human-readable form and written

to the stream;

• the function returns the number of characters

(not values, as opposed to the fscanf function)

correctly written to the stream.
This function enables us to send error messages directly to the

stderr stream, which is, as you already know, both encouraged and

welcome.

fprintf() function

• As you probably remember, the printf function

prototype is as follows:

 int printf (char *format, ...);

• This implies that the invocation:

 printf("%d", number);

• is the functional equivalent of the following

invocation:

 fprintf(stdout, "%d", number);

fprintf() function

fprintf() function

fprintf() function

Outline

1. Connecting to the real world: files and streams

1. Reading from the stream

2. Writing to the stream

3. Dealing with the stream's position

2. Quiz

The ftell() function

• The ftell() function: getting the stream's

position

• the function name comes from the words file tell;

• the function expects one parameter, which is a

pointer to the opened stream;

The ftell() function

• the function returns the distance (in bytes)

counted from the beginning of the file to the

current file position; thus, the first byte of the file

is located at position zero;

• in the event of an error, the function returns EOF

(-1) as the result;

• the function affects neither the position of the file

nor its content.

The fseek() function

• The fseek() function: setting the stream's

position

• The fseek function allows us to set the current

position of the file.

The fseek() function

• the name of the function comes from the words

file seek;

• the function expects the following three

parameters:

 stream: a pointer to an opened stream;

 offset: a value describing the target position (may be

negative);

The fseek() function

 whence: a value indicating a reference point, i.e.

saying how the new position is to be calculated;

usually the role of this parameter is played by one of

three symbolic constants:

• SEEK_SET: the offset parameter specifies the position

calculated from the beginning of the file;

• SEEK_CUR: the offset parameter specifies the position

calculated from the current file position;

• SEEK_END: the offset parameter specifies the position

calculated from the end of the file;

The fseek() function

• in the event of an error, the function returns EOF

(-1); otherwise, the return value is 0;

• the function obviously affects the current position

of the file.

The fseek() function

• We assume that the following declaration is

active:

 FILE *F;

• Let’s perform some fseek invocations, describing

their effects.

 fseek(F, 0, SEEK_SET);

• sets the file in its starting position.

 fseek(F, 100, SEEK_SET);

• sets the file at the 100th byte from the beginning

of the file.

The fseek() function

 fseek(F, 0, SEEK_END);

• sets the file at the end.

 fseek(F, 0, SEEK_CUR);

• does not change the position of the file (why?).

 fseek(F, -1, SEEK_CUR);

• offsets the current file position by 1 byte.

The fseek() function

The fseek() function

Rewinding the stream

• This function is a kind of an archaic artefact from

the good old days when magnetic tape storage

devices were in common use. These devices

couldn’t perform random access, and you had to

rewind the tape to the beginning for it to be re-

read or re-written to.

Rewinding the stream

• The rewind function has the following prototype

• and when invoked it plays the same role as the

following fseek invocation:

 fseek(stream, 0, SEEK_SET);

• except for the fact that rewind doesn’t return any

value and it doesn't set the errno variable.

Checking the end of the file

• A few words of explanation are necessary here:

the end of file (EOF) state occurs when there’s

nothing more to read in the file.

• This function returns a non-zero value if the

stream is in the EOF state; and otherwise, the

return value is 0.

Checking the end of the file

• Let's try to use this function in a short snippet

taken from one of the previous programs. We’ll

carefully read the input file in the following way:

while(!feof (input)) {

 fgets (line, sizeof(line), input));

 fputs (line, output);

}

Outline

1. Connecting to the real world: files and streams

1. Reading from the stream

2. Writing to the stream

3. Dealing with the stream's position

2. Quiz

Quiz

Quiz

Quiz

Quiz

Quiz

Quiz

