Maciej Sobieraj

Lecture 12

Outline

1. Connecting to the real world: files and streams

1. Reading from the stream
2. Writing to the stream {:
3. Dealing with the stream's position

2. Quiz

o

fgetc() function

int fgetc(FILE *stream);

 the function name comes from the words file get
character;

* the function expects one parameter of type FILE
*: the parameter must be a pointer to a stream
opened for reading or updating;

 the function attempts to read one character
(byte) from the stream identified by the .
parameter; if possible, the function returns th
code of the retrieved character as its result

fgetc() function

int fgetc(FILE *stream);

* If the attempt fails (e.g. because the current file
position is already located after the last
character in the file), fgetc returns the value of
EOF (-1) and the file position is not changed,;

* the function might be used for reading
characters from a text file as well as reading s
bytes from a binary file. /

I | fgetc() function

* There's an additional function with the following
prototype:

= int getchar(void);
« and it causes the same effects as the following
Invocation:
= fgetc(stdin);
* The first function is used for reading a single
character from the stdin stream.

I | fgetc() function

 fgetc() function: reading one character from the
Stream #include <stdio.h>

#include <errno.h>

int main(int argc, char *argv|]) { {::

FILE *inp;
int chr;

o

/* check if there is one argument */

if(argc 1= 2){
printf("usage: show file_name\n");
return 1;
}
/* check if we are able to open the input file */
if((inp = fopen(argv|1],"rt")) == NULL) {
printf("Cannot open the file %s\n", argv[1]);
return 2;
}

fgetc() function

 fgetc() function: reading one character from the
stream

/* we will try to read the file char by char and print the chars to screen */ {::
o

while((chr = fgetc(inp)) != EOF)
printf("%c",chr);

/* it's time to close the stream */
fclose(inp);
return O;

I | fgets() function

 fgets() function: reading one string from the
stream

char *fgets(char *str, int maxsize, FILE *stream);

 the function name is from the words file get
string;

fgets() function

 fgets() function: reading one string from the
stream

char *fgets(char *str, int maxsize, FILE *stream); C

* the function expects the following three

parameters:
= str: a pointer to a string in which fgets will store one
line taken from the stream; o o

can be safely stored inside the str,

= stream: a pointer to the stream opened for read&%
or updating;

fgets() function

char *fgets(char *str, int maxsize, FILE *stream);

« the function attempts to read one line of text from the
stream,; If it succeeds, the function stores at most
maxsize characters in the string pointed to by str; if the
file contains lines of a greater length, they will be read
part by part;

« If the reading is successful, the function returns the
value of the str parameter, and the current positioncof
the file is moved to the place after the last retrieved
character;

« otherwise the function returns NULL as a result and\ea%
current file position is not changed.

I | fgets() function

* There's an additional function with the following
prototype:

= char* gets(char *str);
« which causes the same effects as the following
Invocation:
= fgets(str, INT_MAX, stdin);
« where INT_MAX is a symbolic constant
representing the maximum value of type Int.

fgets() function

#include <stdio.h>
#include <errno.h>

int main(int argc, char *argv|]) {
FILE *inp; {::
char line[128];
if(arge 1= 2) {

printf("usage: show?2 file_name\n");
return 1;
}

o

if((inp = fopen(argv[1],"rt")) == NULL) {
printf("Cannot open the file %s\n", argv|[1]);
return 2;

}

while((fgets(line,sizeof(line),inp)) '= NULL)
printf("%s" line);

fclose(inp);

return O;

fread() function

« fread() function: reading bytes from the
stream

int fread(void *mem, int size, int count, FILE *stream);

* the function name derives from the words file read;

 the function expects the following four parameters:

= mem: a pointer to a memory in which fread will store a portion
of bytes read from the stream;

= size: the size (in bytes) of the portion to be read,;
= count: the number of portions to be read,;

fread() function

« fread() function: reading bytes from the
stream

int fread(void *mem, int size, int count, FILE *stream);

 the function attempts to read size * count bytes from the
stream,; If it succeeds, the function stores the read bytes
In the memory pointed to by mem;

 the function returns the number of successfully read
portions; it may, but doesn’t have to, be equal to the
count value; a value of 0 says that the function was
unable to read any portion; the current position of thg
IS moved to the place after the last read byte.

fread() function

 fread uses two parameters to specify the size of
the data to read: size and count. How do we
deal with it?

e Suppose that we want to retrieve the value from the
Input stream and store the bytes in the number variable.
The following declarations apply:

= Int number;
FILE *input;

» fread(&number, sizeof(int), 1, input);
fread(&number, 1, sizeof(int), input);

fread() function

* In the first case, fread will read one portion of

sizeof(int) size.
n the second case, fread will read sizeof(int)
portions of 1 byte each.

n both cases, the fread attempts to read
sizeof(int) bytes, but the results returned by the
function will differ. Since fread returns the

number of correctly read portions, it will be eéqu,
to 1 in the first case and to sizeof (int) in the &
second, as long as everything is correct. g

fread() function

#include <stdio.h>
#include <errno.h>

int main(int argc, char *argv(]) {
FILE *inp;
unsigned char buffer[1024]; /* 1 kilobyte */
int i, read;

if(argc 1=2) {
printf("usage: show3 file_name\n");
return 1;

}

if((inp = fopen(argv[1],"rb")) == NULL) {
printf("Cannot open the file %s\n", argv(1]);
return 2;

}

do {
read = fread(buffer,1,sizeof(buffer),inp);
for(i=0;i<read; i++)

printf("%02X",buffer/il);

} while (read > 0);

fclose(inp);

return O;

o

I | fscanf() function

* We need a function that can read a string

representing any value and convert it directly to
Internal representation.

« Such a function exists and we've used it already,
but in a form that allowed us to read the data
from the stdin stream only.

= int scanf(char * format, ...);

I | fscanf() function

- fscanf() function: formatted reading from the
stream

int fscanf(FILE *stream, const char *format, ...); {:

- This function expects the following parameters{:}

= stream: a pointer to the stream opened for reading
or updating;

fscanf() function

int fscanf(FILE *stream, const char *format, ...);

The function returns the number of values
correctly read from the stream.

The invocation like this:
= scanf("%d", &number);

IS the same as this:
= fscanf(stdin, "%d", &nhumber);

fscanf() function

#include <stdio.h>

#include <errno.h>

#include <string.h>

int main(int argc, char *argv|]) {
int numbers[1000];

int i,aux;
int numbersread = 0;

int swapped;
FILE *inp;

if(argc '=2) {
printf("usage: intsort input_file\n");
return 1;

}

o

if((inp = fopen(argv[1],"rt")) == NULL) {

printf("Cannot open %s - %s\n",argv[1],strerror(errno)); (o)
return 2;
}
while(fscanf(inp,"%d",&numbers[numbersread]) == 1) {
numbersread++;
if(numbersread == 1000)
break;

fscanf() function

fclose(inp);

if(numbersread == 0) {
printf("No numbers found in the files %s\n",argv([1]);
return 3;

}

do {
swapped = 0;

for(i = 0; i < numbersread - 1; i++)
if(numbers|i] > numbers[i + 1]) {
swapped = 1;
aux = numbers|il;
numbers[i] = numbers|i + 1];
numbers|i + 1] = aux;
}
} while(swapped);
printf("The sorted values: ");
for(i = 0; i < numbersread; i++)
printf("%d ",numbersli]);
printf("\n");
return O;

Outline

1. Connecting to the real world: files and streams

1. Reading from the stream
2. Writing to the stream {:
3. Dealing with the stream's position

2. Quiz

o

fputc() function

fputc() function: writing one character to the
stream

int fputc(int chr, FILE *stream);

the function name comes from the words file put
character;
the function expects two parameters:

= chr: a code of the character (or the character itsg
to be output to the stream;

updating;

fputc() function

int fputc(int chr, FILE *stream);

* If the function succeeds, it returns the chr character
code as its result; it will always be a number between 0
and 255; the current file position moves one byte toward
the end of the file;

« If the function fails (e.g. because of insufficient disk
space), fputc returns the value of EOF (-1) and the file
position Is not changed,

« this function can be used for writing characters to a
file or bytes to a binary file.

I | fputc() function

* There's an additional function with the following
prototype:

= int putchar (int chr);
« which works exactly in the same way as:
= fputc(chr, stdout);

« and is used for writing one character/byte to the
stdout stream.

fputc() function

#include <stdio.h>
#include <errno.h>

int main(int argc, char *argv(]) {
FILE *inp, *out;

int chr;

/* check if we've got exactly two arguments */

iflargc '=3){
printf("usage: copyc source_file target_file\n");
return 1;

}

/* check if we are able to open the source file */
if((inp = fopen(argv[1],"rb"))== NULL) {
printf("Cannot open %s\n", argv(1]);
return 2;

o

fputc() function

/* check if we are able to open the target file */
if((out = fopen(argv|2],"wb")) == NULL) {
printf("Cannot create %s\n", argv[2]);
fclose(inp);
return 3;

}

/* we are going to read char by char until we reach EOF */
while((chr = fgetc(inp)) != EOF)
if(fputc(chr, out) == EOF)
break;
fclose(inp);
fclose(out);
return O;

o

fputs() function

fputs() function: writing a string to the
stream

int fputs(char *string, FILE *stream);

the function name derives from the words file put string
the function expects two parameters:

string: a pointer to the string to be written to the
stream; note: the function will not implicitly add a \n
character at the end of the string (in contrast to puts);

«q&“‘“‘m P”?’V'f'i{,,
stream: a pointer to the stream opened for writing c

Nl

4? &

updating 5

fputs() function

int fputs(char *string, FILE *stream);

the function attempts to write the content of the string
to the stream

If the function is successful, it returns a non-negative
number and the current position of the file is moved
towards the end of the file

In the event of an error the function returns EOF as a
result; the current file position is unchanged,

the function is definitely not intended to write data tg
binary files as it is not possible to write a byte of valgk

I | fputs() function

* Here is a function (you already know it) with the
following prototype:

Int puts(char *string);
which is an equivalent of:

fputs(string, stdout);

fputs() function

#include <stdio.h>
#include <errno.h>

int main(int argc, char *argv|]) {
FILE *inp, *out;
char line[128];

if(argc '1=3) {
printf("usage: copys source_file target_file\n");
return 1;

}

if((inp = fopen(argv|1],"rt")) == NULL) {
printf("Cannot open %s\n", argv|[1]);
return 2;

o

fputs() function

if((out = fopen(argv(2],"wt")) == NULL) {
printf("Cannot create %s\n", argv[2]);
fclose(inp);
return 3;

}

while((fgets(line,sizeof(line),inp)) = NULL)
if(fputs(line,out) == EOF)

break;

fclose(inp);

fclose(out);

return O;

o

fwrite() function

« fwrite() function: writing bytes to the stream

int fwrite(void *mem, int size, int count, FILE *stream);

* the function name comes from the words file write:

 the function expects four parameters:
= mem: a pointer to the memory area to be written to the streann,
= size: the size (in bytes) of one memory portion being written;
= count: the number of portions intended to be written;

~ NIKA Pp
AT 4{9 ”/

= Stream: a pointer to the stream opened for writing or updating
S Twbe” 3%
R, v
.Zl’

é
& <
YERsrry of

fwrite() function

int fwrite(void *mem, int size, int count, FILE *stream);

 the function attempts to write (size * count) bytes from
mem to the stream;

* the function returns the number of successfully (actually)
written portions and the current position of the file is
moved toward the end of the file; the result may differ
from the count value, due to some errors preventing
successful writing;

 the function is ideal for writing to binary files, but yo
use it to create text files too if you provide the
appropriate handling of the endline characters.

fwrite() function

#include <stdio.h>
#include <errno.h>

int main(int argc, char *argv/(]) {
FILE *inp, *out;
char buffer[16384]; /* 16 kilobytes */
int read, written;

if(arge '=3) {
printf("usage: copyw source_file target_file\n");
return 1;

}

if((inp = fopen(argv[1],"rb")) == NULL) {
printf("Cannot open %s\n", argv|[1]);
return 2;

o

fwrite() function

'f((out = fopen(argv(2],"wb")) == NULL) {

printf("Cannot create %s\n", argv|2]);
fclose(inp);

return 3;

}

do {
read = fread(buffer,1,sizeof(buffer),inp);
if(read)

written = fwrite(buffer,1,read,out);
} while (read && written);
fclose(inp);
fclose(out);
return O;

I | fprintf() function

 fprintf() function: formatted writing to the
stream

int fprintf(FILE *stream, char *format, ...);

« stream: a pointer to the stream opened for
writing or updating;

« format: a pointer to a string describing the data
to be written to the stream;

fprintf() function

int fprintf(FILE *stream, char *format, ...);

 alist of expressions whose values will be
converted into human-readable form and written
to the stream;

* the function returns the number of characters
(not values, as opposed to the fscanf functign)

correctly written to the stream.

This function enables us to send error messages directly to i
stderr stream, which is, as you already know, both encouragég
welcome.

fprintf() function

As you probably remember, the printf function
prototype is as follows:

= int printf (char *format, ...);
This implies that the invocation:

= printf("%d", number);
IS the functional equivalent of the following
Invocation:

= fprintf(stdout, "%d", number);

fprintf() function

#include <stdio.h>
#include <errno.h>
#include <string.h>
int main(int argc, char *argv|]) {
int numbers[1000];
int i,aux;
int numbersread = 0;
int swapped;
FILE *inp, *out;

if(argec '=3) {
fprintf(stderr,"usage: intsort2 source_file target_file\n");
return 1;

}

if((inp = fopen(argv[1],"rt")) == NULL) {
fprintf(stderr,"Cannot open %s: %s\n",argv[1],strerror(errno));
return 2;

o

fprintf() function

if((out = fopen(argv[2],"wt")) == NULL) {
fprintf(stderr,"Cannot create %s: %s\n",argv[2],strerror(errno));
fclose(inp);
return 3;
}
while(fscanf(inp,"%d",&numbers[numbersread]) == 1) {
numbersread++;
if(numbersread == 1000)
break;

fclose(inp);

if(numbersread == 0) {
printf("No numbers found in the file %s\n",argv[1]);
return 3;

fprintf() function

do {
swapped = 0;
for(i=0; i < numbersread - 1; i++)
if(numbers|i] > numbers|i + 1]) {
swapped = 1;
aux = numbersl|il;
numbers[i| = numbers[i + 1];
numbers|i + 1] = aux;
}
I while(swapped);
for(i = 0; i < numbersread; i++)
fprintf(out,"%d\n",numbers|i]);
printf("\n"),
fclose(out);
return O;

Outline

1. Connecting to the real world: files and streams

1. Reading from the stream
2. Writing to the stream {:
3. Dealing with the stream's position

2. Quiz

o

I | The ftell() function

« The ftell() function: getting the stream's
position

long ftell(FILE *stream);

* the function name comes from the words file tell:

 the function expects one parameter, which is a
pointer to the opened stream;

| The ftell() function

long ftell(FILE *stream);

* the function returns the distance (in bytes)
counted from the beginning of the file to the
current file position; thus, the first byte of the file
IS located at position zero;

* In the event of an error, the function returns EOF
(-1) as the result;

 the function affects neither the position of th i58
nor Its content.

I | The fseek() function

* The fseek() function: setting the stream'’s
position

int fseek(FILE *stream, long offset, int whence);

 The fseek function allows us to set the current
position of the file.

The fseek() function

int fseek(FILE *stream, long offset, int whence);

* the name of the function comes from the words
fille seek;

* the function expects the following three
parameters:
= stream: a pointer to an opened stream;

= offset: a value describing the target position (Maypps
negative); o

o)
3

The fseek() function

int fseek(FILE *stream, long offset, int whence);

= whence: a value indicating a reference point, I.e. '{:
saying how the new position is to be calculated,; o
usually the role of this parameter is played by one of
three symbolic constants: 2;:31
O

« SEEK_SET: the offset parameter specifies the position
calculated from the beginning of the file;

« SEEK CUR: the offset parameter specifies the positioﬂ
calculated from the current file position;

« SEEK_END: the offset parameter specifies the positio
calculated from the end of the file;

The fseek() function

int fseek(FILE *stream, long offset, int whence);

* In the event of an error, the function returns EOF
(-1); otherwise, the return value is O;

* the function obviously affects the current position
of the file.

The fseek() function

We assume that the following declaration is
active:

= FILE *F;
Let’s perform some fseek invocations, describing
their effects.

» fseek(F, 0, SEEK_SET);
sets the file in its starting position.

» fseek(F, 100, SEEK_ SET);

sets the file at the 100th byte from the beginf
of the file. :

The fseek() function

= fseek(F, 0, SEEK_END);

* sets the file at the end.
» fseek(F, 0, SEEK _CUR);

 does not change the position of the file (why?).
» fseek(F, -1, SEEK _CUR);
- offsets the current file position by 1 byte.

The fseek() function

#include <stdio.h>
#include <errno.h>
#include <string.h>

int main(int argc, char *argv[]) { {::
FILE *file;
long size;

if(argc !=2) { {::]]

fprintf(stderr,"usage: getsize file_name\n");
return 1;

o

}

if((file = fopen(argv[1],"rt")) == NULL) {
fprintf(stderr,"Cannot open %s: %s\n",argv[1],strerror(errno));
return 2;

The fseek() function

/* attempt to skip to the end of file */
if(fseek(file,0,SEEK_END))
if(errno == EBADF)
fprintf(stderr,"The file has no size: %s\n",argv[1]);
else
fprintf(stderr,"Error in fseek: #%d\n",errno);
else {
size = ftell(file);
printf("File: %s size: %d\n", argv[1], size);
}
fclose(file);
return O;

Rewinding the stream

"his function is a kind of an archaic artefact from
the good old days when magnetic tape storage
devices were in common use. These devices
couldn’t perform random access, and you had to
rewind the tape to the beginning for it to be re-
read or re-written to.

Rewinding the stream

The rewind function has the following prototype

void rewind(FILE *stream);

and when invoked it plays the same role as the
following fseek invocation:

» fseek(stream, 0, SEEK SET);

except for the fact that rewind doesn’t return £Rssex

value and it doesn't set the errno variable.

I | Checking the end of the file

« A few words of explanation are necessary here:
the end of file (EOF) state occurs when there’s
nothing more to read Iin the file.

int feof(FILE *stream);

 This function returns a non-zero value If the
stream Is In the EOF state; and otherwise, thesgs

return value is 0.

I | Checking the end of the file

+ Let's try to use this function in a short snippet
taken from one of the previous programs. We'll
carefully read the input file in the following way:

while(!feof (input)) {
fgets (line, sizeof(line), input));
fputs (line, output);

Outline

1. Connecting to the real world: files and streams

1. Reading from the stream
2. Writing to the stream {:
3. Dealing with the stream's position

2. Quiz

o

Quiz

How big is the file created by the following program?

#include <stdio.h>
int main(void) {

FILE *f;
char s[] = "ABC";
char *p = "DEF";
int i=123;

char c="\"";

f = fopen("f","wb");

fprintf (£,"%d %s %s %c",i,s,p,C);
fclose(f);

return 0;

Quiz

What happens when you try to compile and run the following program?

#include <stdio.h>
int main(void) {

FILE *f;
char s[] = "To be or not to be";
long 1i;
f = fopen("f","wtb");
fputs(s,f);

fseek (f, -2, SEEK_END) ;
i = ftell (f);

fclose (£);
printf("sd",1i);
return 0;

O the program outputs -2
O the program outputs 18

O the program outputs 16

Quiz

What happens when you try to compile and run the following program?

#include <stdio.h>
int main(void) {
FILE *f;

int 1i;
f = fopen("f","wbh");
fputs ("123",1f);
fclose (f);
f = fopen("f","rt");
fscanf (£, "%d", &1) ;
fclose (£);
printf("%d",1i);
return 0;

O the program outputs 12

O the program outputs 1

O the program outputs 123

Quiz

What happens when you try to compile and run the following program?

#include <stdio.h>
int main(void) {
FILE *f;

int i;
f = fopen("f", "w+b");
fputs("123",f);
rewind (f) ;
fputs ("3",f);
fclose (f);
f = fopen("£","rt");
fscanf (£, "%d", &i) ;
fclose(f);
printf ("%d",i);

return 0;

} O the program outputs 232
O the program outputs 323

O the program outputs 123

Quiz

What happens when you try to compile and run the following program?

#include <stdio.h>
int main (void) {
FILE *f;

int 1i;
f = fopen("f","wb");
fclose (f);
f = fopen("f","rb");
fseek (£, 0, SEEK END) ;
i = ftell (f);
fclose (f);
printf ("%d",1);

return 0;

O the program outputs 2
O the program outputs 1

O the program outputs 0

Quiz

What happens when you try to compile and run the following program?

#include <stdio.h>

int main(void) {
FILE *f;
int 1i;
f = fopen("f","wb");
fwrite(f,2,1,1f);
fclose (f);
f = fopen("f","rb");
fseek (£, 0, SEEK_END) ;
i = ftell(f);
fclose (f);
printf ("%d",1i);
return 0;

O the program outputs 2
O the program outputs 1

O the program outputs 0

