
Maciej Sobieraj

Lecture 13

Outline

1. Preprocessor and declarations

1. Preprocessor: absolute basics

2. Preprocessor: the #include directive

3. Preprocessor: the #define directive

4. Preprocessor: the parameterized #define directive

5. Preprocessor: the third variant of the #define and

#undef directives

6. Preprocessor: predefined identifiers

2. Quiz

The role of preprocessing

• The preprocessor is responsible for the initial

processing of the program.

• the effects of preprocessing are visible only to

the compiler.

• The form of your program, when it leaves the

preprocessor, disappears at the same time the

compiler exits.

• This means that the preprocessed source code

is not stored in any way.

The role of preprocessing

The role of preprocessing

• The gcc compiler may be launched directly from

the command line.

• If you want to know what your source code looks

like after preprocessing, you’ll need to use the -E

option.

• The preprocessed source code will be sent to

the standard output and all modifications made

by the preprocessor will be marked in a specific

way.

The role of preprocessing

• If you want to preserve the preprocessed text for

further analysis, you can redirect the standard

output to a file and view it in your favorite text

editor.

The role of preprocessing

• Some general principles:

 the preprocessor directives always begin with the #

which must be the first visible character in the line;

 if the preprocessor directive doesn't fit on one line and

needs to be split, you must put the \ character in the

place where the directive is broken, e.g:

• #include \

<stdio.h>

 any preprocessor directive placed in a particular file

acts only inside this file and nowhere else.

Outline

1. Preprocessor and declarations

1. Preprocessor: absolute basics

2. Preprocessor: the #include directive

3. Preprocessor: the #define directive

4. Preprocessor: the parameterized #define directive

5. Preprocessor: the third variant of the #define and

#undef directives

6. Preprocessor: predefined identifiers

2. Quiz

Including a file

• The #include directive works as follows:

 the preprocessor looks for a file named filename, but

if you enclose the name inside quotes, it searches for

that file in the same directory as the file containing the

directive; otherwise it searches for the file in the

compiler's default directory;

 if the file is not found, the preprocessor reports an

error; otherwise, the #include directive is replaced

with the content of the included file;

 …

Including a file

• The #include directive works as follows:

 …

 the included file may contain an #include directive,

too; in addition, a particular compiler may impose a

certain limit on the number of nested inclusions;

 you may use the #include directive in any part of the

source file, not only at the beginning.

Including a file

• Let’s assume that we have two source files. The

first one is named src1.c and contains the

following text:

 int main(void) {

 #include "src2.c"

}

• The second one is named src2.c and looks like

this:

 int i = 0;

return i;

Including a file

• When you start the gcc compiler with the

following command:

 gcc -E src1.c

• you see the following

text displayed on the

screen:

• the lines marked with

the # character are

used internally by the

compiler,

Outline

1. Preprocessor and declarations

1. Preprocessor: absolute basics

2. Preprocessor: the #include directive

3. Preprocessor: the #define directive

4. Preprocessor: the parameterized #define directive

5. Preprocessor: the third variant of the #define and

#undef directives

6. Preprocessor: predefined identifiers

2. Quiz

Three forms of the directive

• The #define directive may take one of the

following three forms

Three forms of the directive

• Let’s explain the first form of the directive now.

Its operation is as follows:

 the preprocessor remembers the identifier and the

text associated with it;

 from this moment on, the preprocessor analyses the

source code, replacing any occurrence of the

identifier with the associated text;

 the directive itself won't appear in the preprocessed

source code.

#define: simple substitution

• Note: PI is an identifier, while 3.1415 is text. The

preprocessed code will take the following form

#define: simple substitution

• The identifier used inside the #define directive

(such as PI) is often called a macro and the

process of replacing it with corresponding text is

called a macro substitution.

• You usually write the macro names in capital

letters, allowing them to be distinguished from

ordinary variable names.

• This is not an absolute rule, but fairly widely

recognized and used.

#define: simple substitution

• This form of the directive is often used to

improve program readability and to make it

easier to modify.

#define: simple substitution

#define: disadvantages and perils

#define: disadvantages and perils

• At first glance, it would seem that the value

assigned to the i variable is 16 (actually: 2 * 8).

• Unfortunately, nothing could be further from the

truth. Don't forget that the preprocessor doesn’t

use the value of the identifier, but only replaces

it with the associated text.

#define: predefined identifiers

• Many of the identifiers we’ve used so far (for

example, the NULL symbol or the EOF symbol)

are actually macros.

• If we take a look into the stdio.h and stdlib.h

header files, we find (among many, many others)

the following #define directives

Outline

1. Preprocessor and declarations

1. Preprocessor: absolute basics

2. Preprocessor: the #include directive

3. Preprocessor: the #define directive

4. Preprocessor: the parameterized #define

directive

5. Preprocessor: the third variant of the #define and

#undef directives

6. Preprocessor: predefined identifiers

2. Quiz

The second form of the #define

directive

• The parameter_list element should consist of

different pairwise identifiers (at least one),

separated by commas.

• A macro defined in this way is called a macro

with parameters, or a parameterized macro.

The second form of the #define

directive

• When the preprocessor meets an identifier

identical to the one defined as a macro and

there’s a parameter list after it, it takes the

following actions:

 each macro parameter in the text is replaced by the

argument specified in the source code;

 the macro identifier, along with the parameters list, is

replaced by the text composed in the first step;

 the directive itself won't appear in the preprocessed

source code.

Parameterizing the #define

directive

• The first step of the macro substitution will cause

the x parameter to be replaced with the macro's

argument (i.e. “length”).

A macro is not a function!

• Note: a macro is not a function. It only looks

like one.

A macro is not a function!

• If we rewrite the macro in the following way:

 #define SQR (X) ((X) * (X))

• it works as expected:

 float f = ((length + 1) * (length + 1))

A macro is not a function!

A macro is not a function!

• If SQR is a function:

 it returns the value of (length * length);

 the length variable is increased by 1.

• Since SQR is a macro, the f variable field will be

assigned with the value of the following

expression:

 ((length++) * (length++))

Some examples of parameterized

macros

Some examples of parameterized

macros

Some examples of parameterized

macros

Some examples of parameterized

macros

Outline

1. Preprocessor and declarations

1. Preprocessor: absolute basics

2. Preprocessor: the #include directive

3. Preprocessor: the #define directive

4. Preprocessor: the parameterized #define directive

5. Preprocessor: the third variant of the #define

and #undef directives

6. Preprocessor: predefined identifiers

2. Quiz

The third variant of the #define

directive

• The directive affects preprocessor operations in

the following way:

 it causes the preprocessor to assume that the

identifier is a defined identifier (i.e. known to the

compiler);

 the directive itself won't appear in the preprocessed

source code;

 the source code is not changed in any way.

The #undef directive

• The #undef directive cancels the effects of the

selected #define directive and takes the

following form:

• From the moment the #undef directive is used,

the identifier is not defined.

The #undef directive

The #undef directive

• Before the preprocessor sees the first #define

directive, add is undefined (from the

preprocessor's perspective), so the appearance

of the phrase:

 i = add(i);

• is treated as a function invocation and doesn’t

elicit any reaction from the preprocessor.

The #undef directive

• The preprocessed source code will look as

follows:

 int add(int x) {

 return x + 1;

}

int main(void) {

 int i = 100;

 i = add(i);

 i = (2 * (i)) ;

 i = add(i);

 printf("%d",i);

 return 0;

}

Outline

1. Preprocessor and declarations

1. Preprocessor: absolute basics

2. Preprocessor: the #include directive

3. Preprocessor: the #define directive

4. Preprocessor: the parameterized #define directive

5. Preprocessor: the third variant of the #define and

#undef directives

6. Preprocessor: predefined identifiers

2. Quiz

The __LINE__ identifier

• A number of identifiers are defined by the

preprocessor itself.

• Wherever you use the __LINE__ it is replaced

by an integer literal equal to the line number,

where the symbol appears.

• This means that the symbol will have a different

value in every line of your source code.

The __LINE__ identifier

• Note the empty lines intentionally placed inside

the text.

The __LINE__ identifier

• This code, when passed through the

preprocessor, will take the following form:

 #include <stdio.h>

 int main(void) {

 printf("this is line #%d\n", 4);

 printf("this is line #%d\n", 6);

 printf("this is line #%d\n", 10);

 return 0;

 }

The __FILE__ identifier

• The __FILE__ identifier is always replaced by a

string literal containing the name of the source

file in which the identifier was used.

The __FILE__ identifier

• Assuming that the code was placed in a file

named filesym.c, it will take the following form

after it passes through the preprocessor:
 #include <stdio.h>

 int main(void) {

 puts("Hello from the source file named ""filesym.c");

 return 0;

 }

• The same code, compiled and run, will emit the

following text to the standard output:

 Hello from the source file named filesym.c

The __FILE__ identifier

• There’s a rule in the “C” language that says that

a string literal can be broken at any point with

the " character, and then any number (including

zero) of white characters may appear; after

which, the literal may be resumed with another "

character.

• oreover, a source code written like this:

 int main(void) {

 puts("Hello from the source file named "

 __FILE__);

 return 0;

 }

The __DATE__ identifier

• The __DATE__ identifier is always replaced by a

string literal containing text denoting the day

the source file was compiled.

The __DATE__ identifier

• his code, after passing through the

preprocessor, may look as follows:
 #include <stdio.h>

 int main(void) {

 puts("The program was successfully compiled on " "Aug 22 2012");

 return 0;

 }

• That means that this code, when compiled and

run, will emit the following text to the standard

output:
 The program was successfully compiled on Aug 22 2012

The __TIME__ identifier

• The __TIME__ identifier is always replaced by a

string literal containing text denoting the time

(hours, minutes, seconds) the source file was

compiled.

The __TIME__ identifier

• This code, after passing through the

preprocessor, may look as follows:

 #include <stdio.h>

 int main(void) {

 puts("I was compiled at " "12:13:23");

 return 0;

 }

• And this code, when compiled and run, will emit

the following text to the standard output:

 I was compiled at 12:13:23

The __STDC__ identifier

• The __STDC__ identifier (as in Standard C) is

defined if and only if the following statement is

true:

 the compiler is operating in compliance with the ANSI

“C” standard

• When ANSI mode is on, it means that the

compiler honors only the language elements

described in the standard documents, and no

extensions or limitations are applied.

• If the compiler isn’t working in ANSI mode, the

symbol is not defined.

Outline

1. Preprocessor and declarations

1. Preprocessor: absolute basics

2. Preprocessor: the #include directive

3. Preprocessor: the #define directive

4. Preprocessor: the parameterized #define directive

5. Preprocessor: the third variant of the #define and

#undef directives

6. Preprocessor: predefined identifiers

2. Quiz

Quiz

Quiz

Quiz

Quiz

