Maciej Sobieraj

Lecture 13

Outline

1. Preprocessor and declarations
Preprocessor: absolute basics
Preprocessor: the #include directive ‘{:
Preprocessor: the #define directive
Preprocessor: the parameterized #define directive {::]

L A
o

Preprocessor: the third variant of the #define and
#undef directives

6. Preprocessor: predefined identifiers
2. Quiz

The role of preprocessing

The preprocessor is responsible for the initial
processing of the program.

the effects of preprocessing are visible only to
the compiler.

The form of your program, when it leaves the
preprocessor, disappears at the same time the
compiler exits.

This means that the preprocessed source coggem
IS not stored in any way.

source code

The role of preprocessing

compiler

binary code
analyzer and
preprocessor » v
code generator

I | The role of preprocessing

« The gcc compiler may be launched directly from
the command line.

* If you want to know what your source code looks
like after preprocessing, you'll need to use the -E
option.

occ -FE prog.c

» The preprocessed source code will be sent tgg
the standard output and all modifications '\"5'8 ¥ 2
by the preprocessor will be marked in a speCkaEes

way.

I | The role of preprocessing

* |If you want to preserve the preprocessed text for
further analysis, you can redirect the standard
output to a file and view it in your favorite text

editor.

ogcc -E prog.c > outputfilename

The role of preprocessing

« Some general principles:

= the preprocessor directives always begin with the #
which must be the first visible character in the line; {:

= if the preprocessor directive doesn't fit on one line an@

needs to be split, you must put the \ character in th
place where the directive is broken, e.qg: i:}
e #include \
<stdio.h>
= any preprocessor directive placed in a particulalofile o
acts only inside this file and nowhere else.

Outline

1. Preprocessor and declarations

Preprocessor:. absolute basics

Preprocessor: the #include directive ‘{:
Preprocessor: the #define directive
Preprocessor: the parameterized #define directive {::]

L A
o

Preprocessor: the third variant of the #define and
#undef directives

6. Preprocessor: predefined identifiers
2. Quiz

Including a file

 The #include directive works as follows:

= the preprocessor looks for a file named filename, but
If you enclose the name inside quotes, it searches for {:
that file in the same directory as the file containing the
directive; otherwise it searches for the file in the

compiler's default directory; {:}
= if the file is not found, the preprocessor reports an

error; otherwise, the #include directive is replaced o
with the content of the included file;

Including a file

 The #include directive works as follows:

= the included file may contain an #include directive, ‘{:
too; in addition, a particular compiler may impose a ©
certain limit on the number of nested inclusions;

= you may use the #include directive in any part of thé\::]
source file, not only at the beginning.

#include <filename>

#include "filename"

Including a file

« Let's assume that we have two source files. The
first one Is named srcl.c and contains the
following text:

* int main(void) {
#include "src2.c"

}
« The second one Is named src2.c and looks like

this:
= Int1=0;
return I

Including a file

* When you start the gcc compiler with the
following command:

= gcc -E srcl.c #1%srcl.c”
: # 1 "<built-in>"

* you see the following # 1 "<command line>"
text displayed on the #1"srcl.c"
screen int main(void) {

* the lines marked with #1"src2.c" 1
the # character are nti=0;
used internally by the return i:

compiler, #4 "srcl.c" 2
}

Outline

1. Preprocessor and declarations

Preprocessor:. absolute basics

Preprocessor: the #include directive ‘{:
Preprocessor: the #define directive
Preprocessor: the parameterized #define directive {::]

L A
o

Preprocessor: the third variant of the #define and
#undef directives

6. Preprocessor: predefined identifiers
2. Quiz

I | Three forms of the directive

* The #define directive may take one of the
following three forms

o

#define identifier text
#define identifier(parameter_list) text

#define identifier

Three forms of the directive

* Let’s explain the first form of the directive now.
Its operation is as follows:

= the preprocessor remembers the identifier and the '{:
text associated with it; (o

= from this moment on, the preprocessor analyses the
source code, replacing any occurrence of the 2;::}
identifier with the associated text;

= the directive itself won't appear In the preproceased o
source code.

H#define identifier text

#define: simple substitution

Source code:

#define Pl 3.1415

int main(void) {
floats =2 * Pl * 10.0:
return O;
}
 Note: Pl i1s an identifier, while 3.1415 is text. The

preprocessed code will take the following form
Preprocessed code:

int main(void) {
floats =2 * 3.1415 * 10.0;
return O:

I | #define: simple substitution

* The identifier used inside the #define directive
(such as Pl) is often called a macro and the
process of replacing it with corresponding text is
called a macro substitution.

 You usually write the macro names in capital
letters, allowing them to be distinguished from
ordinary variable names.

* This Is not an absolute rule, but fairly widely
recognized and used.

#define: simple substitution

 This form of the directive Is often used to

Improve program readability and to make it
easier to modify. sinciude <stdio.h>

int main(void) {

int arr[100], i, sum = 0;

for(i=0;1<100; i++)
arr(il| =2 * i

for(i=0;1<100; i++)
sum += arrlil;

for(i=0;1<100;i ++)
printf("%d\n", arr[i]);

printf("%d\n", sum);

return O;

#define: simple substitution

#include <stdio.h>

#define SIZE 100

int main(void) { {:

int arr[SIZE], i, sum = 0;
for(i=0;i<SIZE; i++)

arr(i] =2 *i;
for(i=0; i< SIZE; i++)

sum += arr|il;
for(i=0;i<SIZE; i ++)

printf("%d\n", arrlil);
printf("%d\n", sum);
return O;

o

#Hdefine:

disadvantages and perils

#define SIZE 4+4
int main(void) {
inti;
i =2 * SIZE;
printf("%d\n",i);
return O;

I | #define: disadvantages and perils

At first glance, it would seem that the value
assigned to the i1 variable is 16 (actually: 2 * 8).

« Unfortunately, nothing could be further from the
truth. Don't forget that the preprocessor doesn’t
use the value of the identifier, but only replaces
It with the associated text.

Il #define: predefined identifiers

- Many of the identifiers we've used so far (for
example, the NULL symbol or the EOF symbol)
are actually macros.

 |f we take a look into the stdio.h and stdlib.h
header files, we find (among many, many others)
the following #define directives
#define NULL ((void *) 0)

#define EOF (-1)
#idefine SEEK SET O

#define SEEK CUR 1
#idefine SEEK END 2

Outline

1. Preprocessor and declarations
Preprocessor:. absolute basics

Preprocessor: the #include directive ‘{:
Preprocessor: the #define directive

Preprocessor: the parameterized #define
directive

5. Preprocessor: the third variant of the #define and
#undef directives

6. Preprocessor: predefined identifiers
2. Quiz

N e
o

L3
o

I | The second form of the #define
directive

#tdefine identifier(parameter _list) text

* The parameter_list element should consist of
different pairwise identifiers (at least one),
separated by commas.

« A macro defined in this way is called a macro
with parameters, or a parameterized macro.

I | The second form of the #define
directive

* When the preprocessor meets an identifier
Identical to the one defined as a macro and
there’'s a parameter list after it, it takes the {:
following actions: O

= each macro parameter in the text is replaced by the
argument specified in the source code;

= the macro identifier, along with the parameters list, is
replaced by the text composed in the first step; o O

= the directive itself won't appear in the preprocessgs
source code.

I | Parameterizing the #define
directive

* The first step of the macro substitution will cause
the x parameter to be replaced with the macro's
argument (i.e. “length”).

Source code:

#define SQR(x) (x * x)
float f = SQR(length);

Preprocessed code:

float f = (length * length);

I | A macro Is not a function!

* Note: a macro is not a function. It only looks
like one.

Source code:

#define SQR(x) (x * x)
float f = SQR(length + 1)

Preprocessed code:

float f = (length + 1 * length + 1)

I | A macro Is not a function!

* If we rewrite the macro in the following way:
= #define SQR (X) ((X) * (X))

* It works as expected:
* float f = ((length + 1) * (length + 1))

I | A macro Is not a function!

Source code:

#define SQR(x) ((x) * (x))
float f = SQR(length++)

Preprocessed code:

float f = ((length++) * (length++))

I | A macro Is not a function!

* |f SQR Is a function:
= it returns the value of (length * length);
= the length variable is increased by 1.

* Since SQR is a macro, the f variable field will be
assigned with the value of the following
expression:

* ((length++) * (length++))

Some examples of parameterized
macros

Source code:
#tdefine MAX(X,Y) (((X) > (Y)) ? (X) : (Y))
int main(void) {

int varl = 100, var2 = 200, var;

floatvl=-1.0,v2=1.0,v;

var = MAX(varl,var2);
v = MAX(v1,v2);

return O;

Some examples of parameterized
macros

Preprocessed code:

int main(void) {
int varl = 100, var2 = 200, var;
floatvl =-1.0,v2=1.0,v;

var = (((varl) > (var2)) ? (varl) : (var2));
v =(((vl) > (v2)) 7 (v1) : (v2));

return O;

Some examples of parameterized
macros

Source code:

#define MAX(XY) (((X) = (Y)) ? (X):(Y))
#define MAX3(X,Y,Z) (MAX((MAX((X),(Y)),(MAX((Y),(Z)))))

int main(void) |
inta=1,b=2,c=3, w;
w=MAX3a+1b-12"c);

o

Some examples of parameterized
macros

Preprocessed code:

int main(void) |
inta=1,b=2,c=3,w;
w = (({((((((a+ 1)) > ((b=1))) ? ((a+ 1)) : (b—1))))) > (((({((b—-12)) > ((2 * c))) ? ((b—1)) : ({2 * <)))))) ?

1
i

Outline

1. Preprocessor and declarations

Preprocessor:. absolute basics

Preprocessor: the #include directive ‘{:
Preprocessor: the #define directive
Preprocessor: the parameterized #define directive {::]

L A
o

Preprocessor: the third variant of the #define
and #undef directives

6. Preprocessor: predefined identifiers
2. Quiz

directive

#define identifier

* The directive affects preprocessor operations |n {:
the following way:

= |t causes the preprocessor to assume that the
identifier is a defined identifier (i.e. known to the 2.1::}
compiler);

= the directive itself won't appear in the preprocesSed o
source code; o

= the source code is not changed in any way.

I | The third variant of the #define

I | The #undef directive

 The #undef directive cancels the effects of the
selected #define directive and takes the
following form:
L

Hundef identifier .

* From the moment the #undef directive Is usgd, O
the identifier is not defined. z

The #undef directive

int add(int x) {
return x+ 1;

}

int main(void) {
inti=100;
i =add(i);

#idefine add(x) (2 * (x))
i =add(i);

#undef add
i = add(i);
printf("%d",i);
return O;

o

I | The #undef directive

- Before the preprocessor sees the first #define
directive, add is undefined (from the
preprocessor's perspective), so the appearance
of the phrase:

= | = add(i);

* IS treated as a function invocation and doesnit

elicit any reaction from the preprocessor.

I | The #undef directive

* The preprocessed source code will look as
follows:

« int add(int X) {

return x + 1; o
}

Int main(void) {
Int 1 =100;
| = add(i);
1=(2*(1));
| = add(i);
printf("%d",i);
return O;

Outline

1. Preprocessor and declarations

Preprocessor:. absolute basics

Preprocessor: the #include directive ‘{:
Preprocessor: the #define directive
Preprocessor: the parameterized #define directive {::]

L A
o

Preprocessor: the third variant of the #define and
#undef directives

6. Preprocessor: predefined identifiers
2. Quiz

I | The LINE__ identifier

* A number of identifiers are defined by the
preprocessor itself.

* Wherever you use t
by an integer litera
where the symbol a

 This means that the

ne LINE__ itis replaced
equal to the line number,
ppears.

symbol will have a different

value in every line of your source code.

The LINE__ identifier

* Note the empty lines intentionally placed inside
the text.

#include <stdio.h>

int main(void) {
printf("this is line #%d\n", __LINE__);

printf("this is line #%d\n", __LINE__);

printf("this is line #%d\n", _ LINE__);
return O;

I | The _ LINE__ identifier

* This code, when passed through the
preprocessor, will take the following form:
= #include <stdio.h> {:

o

Int main(void) {
printf("this is line #%d\n", 4);

printf("this is line #%d\n", 6);

printf("this is line #%d\n", 10);
return O;

}

The FILE identifier

« The FILE identifier is always replaced by a
string literal containing the name of the source
file in which the identifier was used.

#include <stdio.h>

int main(void) {
puts("Hello from the source file named " FILE_);
return O;

I | The FILE identifier

« Assuming that the code was placed in a file
named filesym.c, it will take the following form

after it passes through the preprocessor:
= #include <stdio.h>

Int main(void) {
return O;

}

following text to the standard output:
= Hello from the source file named filesym.c

I | The FILE identifier

* There's a rule in the “C” language that says that
a string literal can be broken at any point with
the " character, and then any number (including
zero) of white characters may appear; after
which, the literal may be resumed with another
character.

e oreover, a source code written like this:
= int main(void) {
puts("Hello from the source file named "

__FILE_):

return O;

}

The DATE Identifier

- The DATE__ Iidentifier is always replaced by a
string literal containing text denoting the day
the source file was compiled.

#include <stdio.h>

int main(void) {
puts("The program was successfully compiled on" _ DATE_);
return O;

The DATE Identifier

 his code, after passing through the
preprocessor, may look as follows:

= #include <stdio.h>

int main(void) {
puts("The program was successfully compiled on " "Aug 22 2012");
return O;

)
« That means that this code, when compiled and
run, will emit the following text to the standard

output:
= The program was successfully compiled on Aug 22 2012

The TIME__ identifier

- The TIME__ identifier is always replaced by a
string literal containing text denoting the time
(hours, minutes, seconds) the source file was
compiled.

#include <stdio.h>

int main(void) {
puts("l was compiled at" TIME_);
return O;

I | The TIME__ identifier

* This code, after passing through the
preprocessor, may look as follows:

= #include <stdio.h>

Int main(void) {
puts("l was compiled at " "12:13:23");
return O;

}

« And this code, when compiled and run, will e
the following text to the standard output: “

= | was compiled at 12:13:23

I | The STDC identifier

- The STDC__ identifier (as in Standard C) Is
defined if and only if the following statement is
true:

= the compiler is operating in compliance with the ANSI
“C” standard
 When ANSI mode is on, it means that the
compiler honors only the language elements
described in the standard documents, and o
extensions or limitations are applied.

« If the compiler isn’t working in ANSI mode, thg
symbol is not defined.

Outline

1. Preprocessor and declarations

Preprocessor:. absolute basics

Preprocessor: the #include directive ‘{:
Preprocessor: the #define directive
Preprocessor: the parameterized #define directive {::]

L A
o

Preprocessor: the third variant of the #define and
#undef directives

6. Preprocessor: predefined identifiers
2. Quiz

Quiz

What happens when you compile and run the following program?

#include <stdio.h>
$define X 2
#define ¥ X*X
$define Z Y+¥
¥define MINUS 2-4
int main (void) {
int i = &;
int j = i * MINUS;
int k = 1 + 3;
printf ("%d", k) ;

return 0;

O the program outputs 20
O the program outputs 30

O the program outputs 40

Quiz

What happens when you compile and run the following program?

#include <stdio.h>
#define F1(X) H*H
#define F2(X) ((XK)* (X))
#define F3(X) ((¥)*X)
int main (void) {

int 1 = 1;

int j = 2;

int k = 3;

int s;

s =F1(i + j) + F2(i - j) + F3(i + k);

printf ("%d", s) ;

return 0;

O the program outputs 16
O the program outputs 13

O the program outputs 10

Quiz

What happens when you compile and run the following program?

#include <stdio.h>
int main (void) {
int ¥ = 200;
int a = ¥;
a += X;
#define X 200
a += ¥%;
fundef X
printf ("%d",a) ;
return 0;

O the program outputs 300
O the program outputs 500

O the program outputs 600

Quiz

What happens when you compile and run the following program?

$include <stdio.h>

int ¥ = 0;

#definse ¥ 100;

int funl (void) {
return X;

1

fundef X

int fun2 (void) {
return X;

1

int main (void) {
int s;
s = funl () + funz();
printf ("%d4d", s) ;
return 0;

O the program outputs 200
O the program outputs 100

O the program outputs 300

